
Lecture-27: Reduction to hypothesis testing

1 Introduction

The difficulty with large-scale asymptotics is that to find minimax lower bound, one needs to find
a rate distortion function and channel capacity, both of which are difficult problems exacerbated in
nonparametric and high dimensional settings. Further, these lower bounds may not be applicable in
non asymptotic settings, and are sometimes tied to the quadratic loss function. An alternative and
more generic approach is to show minimax lower bounds using the following three commonly used
techniques: (a) Le Cam’s method, (b) Assouad’s lemma, and (c) Fano’s method. The common rationale
of all three methods is reducing statistical estimation to hypothesis testing. Specifically, we lower bound
the minimax risk R∗(Θ) for the parameter space Θ in the following steps.
Step 1. We notice that R∗(Θ)⩾ R∗(Θ′) for any subcollection Θ′ ⊂ Θ.
Step 2. From mutual information method, we have for any choice of prior π,

R∗
π ⩾ ϕ−1(I(θ; X))⩾ ϕ−1(C).

Step 3. Choose a suitable prior π ∈M(Θ′), to obtain

R∗(Θ)⩾ R∗(Θ′)⩾ R∗
π ⩾ ϕ−1(C).

Remark 1. Le Cam, Assouad, and Fano’s methods amount to choosing Θ′ to be a two-point set, a hy-
percube, or a packing, respectively. In particular, Le Cam’s method reduces the estimation problem
to binary hypothesis testing. This method is perhaps the easiest to evaluate; however, the disadvan-
tage is that it is frequently loose in estimating high-dimensional parameters. To capture the correct
dependency on the dimension, both Assouad’s and Fano’s method rely on reduction to testing multiple
hypotheses.
Remark 2. All three methods in fact follow from the common principle of the mutual information
method (MIM), corresponding to different choice of priors. Compared to the MIM, the limitation of
these methods is that they are ineffective for certain problems such as estimation better than chance,
due to the looseness in constant factors.

1.1 Le Cam’s two-point method

Definition 1.1. Let α > 0 and a parameter space Θ with any three parameters θ0,θ1,θ ∈ Θ. We call a loss
function ℓ : Θ × Θ → R+ an α-metric on Θ, if it satisfies
(a) symmetry, i.e. ℓ(θ0,θ1) = ℓ(θ1,θ0),
(b) positivity, i.e. ℓ(θ0,θ1)⩾ 0 with equality iff θ0 = θ1, and
(c) α-triangle inequality, i.e. ℓ(θ0,θ1)⩽ α(ℓ(θ0,θ) + ℓ(θ,θ1)).

Remark 3. We observe that α = 1 for ℓ1 and ℓ∞ norm and α = 2 for ℓ2 norm. This is due to the fact that√
ℓ2(θ0,θ1)⩽

√
ℓ2(θ0,θ) +

√
ℓ2(θ,θ1) and

√
ℓ2(θ0,θ)ℓ2(θ1,θ)⩽ 1

2 (ℓ2(θ0,θ) + ℓ2(θ1,θ)).

Theorem 1.2. Consider a simple statistical decision theory setting with Θ = Θ̂, and loss function ℓ : Θ × Θ →
R+ that is an α-metric on parameter space Θ. Then, the minimax risk R∗(Θ)≜ infθ̂ supθ∈Θ Eθℓ(θ, θ̂) satisfies

R∗(Θ)⩾ sup
θ0,θ1∈Θ

ℓ(θ0,θ1)

2α
(1 − TV(Pθ0 , Pθ1)). (1)

Proof. Fix parameters θ0,θ1 ∈ Θ, a loss function ℓ as defined in theorem hypothesis, and estimator θ̂ :

X→ Θ. We define p(X) ≜ ℓ(θ1,θ̂(X))

ℓ(θ0,θ̂(X))+ℓ(θ1,θ̂(X))
, and the following randomized test θ̃ : Ω → {θ0,θ1}X for

any independent uniform random variable U : Ω → [0,1], such that

θ̃(X)≜ θ01{U⩽p(X)} + θ11{U>p(X)}.
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We observe that the probability of errors for the randomized detector θ̃ are

E[1{θ̃(X) ̸=θ} | θ = θ0] = EX∼Pθ0
(1 − p(X)), E[1{θ̃(X) ̸=θ} | θ = θ1] = EX∼Pθ1

p(X).

Using α-triangle inequality for loss function ℓ, we observe that

1 − p(X)⩽ α
ℓ(θ0, θ̂(X))

ℓ(θ0,θ1)
, p(X)⩽ α

ℓ(θ1, θ̂(X))

ℓ(θ0,θ1)
.

From this set of inequalities, we can lower bound the corresponding loss for parameter θi for i ∈ {0,1},
as

E[ℓ(θi, θ̃(X)) | θ = θi] = ℓ(θ0,θ1)E[1{θ̃(X) ̸=θi} | θ = θi]⩽ αE[ℓ(θi, θ̂(X)) | θ = θi].

We assume θ ∼ π ∈ M(θ0,θ1). Specifically, we take the prior π ≜ 1
2 (δθ0 + δθ1) to obtain the following

lower bound on the Bayes risk

Rπ(Θ) = Eℓ(θ, θ̂(X)) =
1

∑
i=0

πθi E[ℓ(θi, θ̂(X)) | θ = θi]⩾
1
α

1

∑
i=0

πθi E[ℓ(θi, θ̃(X)) | θ = θi].

Using the symmetry of loss function ℓ and the minimum average probability of error for binary hypoth-
esis testing from Theorem A.2, we obtain

Rπ(Θ)⩾
1
α
ℓ(θ0,θ1)

1

∑
i=0

πθi E[1{θi ̸=θ̃(X)} | θ = θi] =
1
α
ℓ(θ0,θ1)P

{
θ̃(X) ̸= θ

}
⩾

ℓ(θ0,θ1)

2α
(1 − TV(Pθ0 , Pθ1)).

Example 1.3 (Binary hypothesis testing). Consider a binary hypothesis testing problem with Θ ≜
{θ0,θ1} and the Hamming loss ℓ(θ, θ̂) = 1{θ ̸=θ̂}, for any θ, θ̂ ∈ Θ. This loss is an α metric on Θ
with α = 1. Let Pe be the probability of error as defined in (2). Then the left side of (1) is the
minimax probability of error, and the right side of (1) is the optimal average probability of error
since Pe(θ̂)⩾ 1 − TV(P, Q) for any random estimator θ̂ : Ω → ΘX from (3).

Remark 4. We make the following observations for the Le Cam lower bound (1).
(a) Binary hypothesis testing is an example where the bound (1) is tight up to constants. In fact, these

two quantities can coincide, for example for Gaussian location model.
(b) Another special case of interest is the quadratic loss ℓ(θ, θ̂) =

∥∥θ − θ̂
∥∥2

defined for any θ, θ̂ ∈ Rd,
which satisfies the α-triangle inequality with α = 2. In this case, the leading constant 1

4 in (1) makes
sense, because in the extreme case of TV = 0 where Pθ0 and Pθ1 cannot be distinguished, the best
estimate is simply θ0+θ1

2 .
(c) Let P, Q ≪ µ for measures P, Q,µ ∈M(X), so that we can define relative densities p≜ dP

dµ and q≜ dQ
dµ .

Then, we observe that |p(x)− q(x)|⩾ (p(x)−q(x))2

p(x)+q(x) since |p(x)−q(x)|
p(x)+q(x) ⩽ 1. It follows that LC ⩽ TV.

(d) The inequality (1) can also be deduced based on properties of f -divergences and their joint range.
We consider the prior π = 1

2 (δθ0 + δθ1). Then the Bayes estimator is the posterior mean and given

by
θ0dPθ0

+θ1dPθ1
dP0+dP1

and the Bayes risk is given by

R∗
π =

1
2
∥θ0 − θ1∥2

∫
X

dPθ0 dPθ1

dPθ0 + dPθ1

=
1
4
∥θ0 − θ1∥2 (1−LC(Pθ0 , Pθ1))⩾

1
4
∥θ0 − θ1∥2 (1−TV(Pθ0 , Pθ1)),

where LC(Pθ0 , Pθ1) =
1
2

∫
X

(dPθ0
−dPθ1

)2

dPθ0
+dPθ1

= 1 − 2
∫
X

dPθ0
dPθ1

dPθ0
+dPθ1

is the Le Cam divergence.
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A Total variation distance

Definition A.1 (Binary hypothesis testing). The binary hypothesis testing problem is formulated as fol-
lows. One is given an observation X : Ω → X with two possible hypotheses. The null-hypothesis H0
implies that X ∼ P, and the alternative hypothesis H1 implies that X ∼ Q. The goal is to decide, on the
basis of observation X alone, which of the two hypotheses holds. In other words, we want to find a
possibly randomized decision function ϕ : Ω → {0,1}X such that the probability of error is minimized,
where probability of error is defined as the sum of two types of probabilities of error

Pe(ϕ)≜ P{ϕ(X) = 1}+ Q{ϕ(X) = 0} . (2)

Theorem A.2 (Minimum probability of error). For total variation distance TV : M(X)×M(X) → R+

and family of real-valued functions G≜
{

f ∈ RX : ∥ f ∥∞ ⩽ 1
}

, the following representations are true for P, Q ∈
M(X).
(a) sup-representation. TV(P, Q) = supE∈σ(X) P{X ∈ E} − Q{X ∈ E} = 1

2 sup f∈G EP f (X) − EQ f (X).
In particular, the minimal total error probability in (2) is given by

min
{

P{ϕ(X) = 1}+ Q{ϕ(X) = 0} : ϕ : Ω → {0,1}X
}
= 1 − TV(P, Q). (3)

(b) inf-representation. If the diagonal {X = Y} ∈ F is measurable, then

TV(P, Q) = min{PX,Y {X ̸= Y} : PX,Y ∈M(X×X), PX = P, PY = Q} , (4)

where minimization is over joint distributions PX,Y with the property PX = P and PY = Q, which are called
couplings of P and Q.

Proof. Let P, Q ≪ µ for some dominating measure µ ∈M(X) and denote the conditional densities p ≜
dP
dµ ,q ≜ dQ

dµ . By definition, TV(P, Q) = 1
2

∫
X
|p(x)− q(x)|dµ(x).

(a) If f ∈ G then ∥ f ∥∞ ⩽ 1. From the linearity of expectation and the fact that ∥ f ∥∞ ⩽ 1, we obtain

EP f (X)− EQ f (X) =
∫
X

f (x)(p(x)− q(x))dµ ⩽
∫
X
|p(x)− q(x)|dµ = 2TV(P, Q).

For any E ∈ σ(X), we have X−1(E) ∈ F, and we can define f ≜ 21E − 1 ∈ G to obtain 1
2 (EP f (X)−

EQ f (X)) = P{X ∈ E} − Q{X ∈ E}. It follows that

TV(P, Q)⩾ sup
f∈G

1
2
(EP f (X)− EQ f (X))⩾ sup

E∈σ(X)

(P{X ∈ E} − Q{X ∈ E}).

For the converse, we take E ≜ {x ∈ X : p(x) > q(x)} and notice that

0 =
∫
X
(p(x)− q(x))dµ =

∫
E
(p(x)− q(x))dµ −

∫
Ec
(q(x)− p(x))dµ.

It follows that
∫

E(p(x)− q(x))dµ(x) =
∫

Ec(q(x)− p(x))dµ(x) and hence this choice of E attains the
supremum, i.e.

TV(P, Q) =
1
2

∫
X
|p(x)− q(x)|dµ(x) =

∫
E
(p(x)− q(x))dµ(x) = P{X ∈ E} − Q{X ∈ E} .

For any E ∈ σ(X), we define a detector ϕ(X)≜ 1{X/∈E} to obtain Pe = P{X /∈ E}+ Q{X ∈ E}= 1 −
(P{X ∈ E}−Q{X ∈ E})⩾ 1−TV(P, Q), where the equality is achieved for E= {x ∈ X : p(x) > q(x)}.

(b) For the inf-representation, we notice that given a coupling PX,Y such that marginals PX = P and
PY = Q and any f : X→ R such that ∥ f ∥∞ ⩽ 1, we have

EP[ f (X)]− EQ[ f (X)] = E[ f (X)− f (Y)] =
∫
X

dPX,Y(x,y)( f (x)− f (y))1{x ̸=y} ⩽ 2PX,Y {X ̸= Y} .

Since TV(P, Q) = 1
2 sup f∈RX :∥ f ∥∞⩽1 EP[ f (X)] − EQ[ f (X)] ⩽ PX,Y {X ̸= Y}, it follows that the inf-

representation is always an upper bound. To show that this bound is tight, we construct the maxi-
mal coupling. We define probability π ≜

∫
X
(p(x) ∧ q(x))dµ(x) ∈ [0,1], and the following densities

r(x)≜
1
π

p(x) ∧ q(x), p1(x)≜
1

1 − π
(p(x)− p(x) ∧ q(x)), q1(x)≜

1
1 − π

(q(x)− p(x) ∧ q(x)).
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We assume that U : Ω → [0,1] is an independent uniform random variable, and V,W, Z : Ω → R are
independent random variables with densities p1,q1,r respectively, We define the coupling as

X ≜ Z1{U⩽π} + V1{U>π}, Y ≜ Z1{U⩽π} + W1{U>π}.

That is, X = Y = Z with probability π, where Z is random and sampled from a distribution with
density r, and with probability 1 − π, the random variables X,Y are sampled independently from
densities p1,q1 respectively. We observe that PX , PY ≪ µ and the relative densities are given as

dPX
dµ

= πr + (1 − π)p1 = p,
dPY
dµ

= πr + (1 − π)q1 = q.

That is, the joint distribution PX,Y is indeed a coupling of P and Q. Further, since TV(P, Q) =
1 −

∫
X
(p ∧ q)dµ, we get

PX,Y {X ̸= Y} = 1 − π = TV(P, Q).
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