Lecture-28: Le Cam’s method: applications

1 Applications of Le Cam’s method

Corollary 1.1. Consider a simple statistical decision theory setting with ® = ©, and loss function £ : ® x @ —
IR, that is an a-metric on parameter space ©. Then, the minimax risk R*(®) £ infssupy.g Egl(6,0) satisfies
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Proof. For x > 0, we have (1 — 1/x)? > 0 and hence 2(1 + x) > (1 + /x)2. It follows that (1 — /x)? >

gljf) From the definition of squared Hellinger distance and Le Cam distance and monotonicity of
expectation, we observe that H>(P,Q) > LC(P,Q). O

Example 1.2 (One-dimensional GLM). Consider i.i.d. observation sample X : (3 — X" with com-
mon distribution AV (6,1) for § € ® £ R. Considering the sufficient statistic X = 1y | X;, the model
is simply {N(G, Ly:0e ]R}. We observe that /m(X — 6p) ~ N (y/m(6 — 6y),1). From the shift and
scale invariance of the total variation distance from LemmaA.1} we have
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where s = /(6 — 8)). Applying Le Cam’s Theorem to @' = {6,6;} C © and quadratic loss with
« = 2, we obtain
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We can compute the total variation distance between two unit variance Gaussians with means 0
and s >0, as
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It follows that % (1-TV(N(0,1),N(5,1))) = 25?Q(5) and sup,. , 35°Q(5) = c for some absolute
constant ¢ ~ 0.083. It follows that R* > % On the other hand, we know that the minimax risk equals

1

+» 50 the two-point method is rate-optimal in this case.

Remark 1. In the above example, for two points separated by @(ﬁ), the corresponding hypothesis
cannot be tested with vanishing probability of error so that the resulting estimation risk (say in squared

error) cannot be smaller than % This convergence rate is commonly known as the parametric rate for
smooth parametric families focusing on the Fisher information as the sharp constant. More generally,
the % rate is not improvable for models with locally quadratic behavior

H?(Py,, Py, 41) < 2, for t — 0. ()



We have studied the sufficient conditions for this local behavior of f-divergences. Indeed, picking
0o € ©° and setting 6; = 0 + ﬁ, so that H2(Py, Py,) = ©(L) from @). By Theorem we have
TV(P(%m,ngm) <1 — ¢ for some constant ¢ and hence Le Cam’s Theorem yields the lower bound Q(%)
for the squared error.

Example 1.3 (Uniform family) Consider the parameter space ® = R and the parametric family
of distributions P(®) £ (U : 6 € R.) where Uy : Q — (0,0) is a uniform random variable, and
quadratic loss function ¢ : G) x @ — R, defined as £(8,8) = (8 — 8)? for each pair (,8) € ® x ©.

Consider @' £ {6p,6;}. We can find the squared Hellinger distance between distributions Py, and
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Since this distance only depends on the ratio, we can take 8y = 1 without any loss of generality
and 0; > 6y =1+t for some ¢ > 0. Note that as opposed to the quadratic behavior in ), we have

H?(U(0,6),U(0,6;)) = 2(1 — 4 /3—?) = t. For an m size i.i.d. sample X : O — X", we have

0, -6 m
H2(U(0,60)%™, U(0,6,)%™) =2 — 2 /° / iy dity =2(1- (@)7) = mt.
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Recall that quadratic loss function ¢ is a 2-metric on Ry and ¢(6y,0;) = t>. Applying Le Cam’s
theorem to ®’ and quadratic loss function, we obtain
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This maximum is obtained for +* = 2/(3m). This rate is not achieved by the empirical mean
estimator which only achieves 1/m rate, but by the maximum likelihood estimator fyy (X) £
max{Xj,..., Xy }. To observe the rate of empirical mean estimator X = % Y"1 Xi, we note that
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To derive the ML estimator, we observe that
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The right hand side is maximized for maximum likelihood estimator fyy (X) = max;c|,) X;. Con-
ditioned on the true parameter 6, the distribution of Ay (X) is
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Recall that ® £ ®@ £ R and the quadratic loss function £ is a 2-metric on @. Thus, the quadratic
risk for ML estimator is
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Other types of behavior in ¢, and hence the rates of convergence, can occur even in compactly
supported location families.

Remark 2. The limitation of Le Cam’s two-point method is that it does not capture the correct depen-
dency on the dimensionality. To see this, let us revisit Example (1.2 for 4 dimensions.



Example 1.4 (d-dimensional GLM). Consider i.i.d. observation sample X : 3 — X" with common
distribution \V'(6,I;) for & € ® £ R?. For the sufficient statistic X = Ly | X;, the model is simply
{N(G, Ll):0€ ]Rd}. For quadratic loss £(6,0) £ 6 — é||§ defined for all 6,0 € ® C R?, the exact

minimax risk is known to be R* = % for any dimension d and sample size m. Let us compare this
with the best two-point lower bound. From the shift and scale invariance of the total variation

distance from Lemmaand defining 6 £ \/m (6, — 6p), we have
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Applying Le Cam’s Theorem to @' = {6,0; } C © for quadratic loss which a 2-metric on ©, we get
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From rotational invariance of isotropic Gaussians, we can rotate the vector 6 to align with

a coordinate vector e; £ (1,0,...,0), which reduces the problem to one dimension, namely,
TV(N(0,1;),N(6,1;)) = TV(N(0,1;), N (]|0],e1, ;) = TV(N(0,1),N(||6],,1)). Thus, we obtain

R* > L sups?(1 — TV(N(0,1), N (5,1))).
4m s>0

Comparing the above display with (31.3), we see that the best Le Cam two-point lower bound in d
dimensions coincide with that in one dimension.

Remark 3. Let us mention in passing that although Le Cam’s two-point method is typically suboptimal
for estimating a high-dimensional parameter 6, for functional estimation in high dimensions e.g. esti-
mating a scalar functional T(6), Le Cam’s method is much more effective and sometimes even optimal.
The subtlety is that as opposed to testing a pair of simple hypotheses Hy : 8 = 6 versus Hj : § = 01, we
need to test Hy : T(0) = t( versus Hj : T(0) = t;, both of which are composite hypotheses and require a
sagacious choice of priors.

A Properties of total variation distance
Lemma A.1 (Shift and scale invariance of total variation). Consider X £ R. Consider a random vector
X : O — X101} with marginals Px,,Px, € M(X). Let Px,,Px, < u € M(X), such that relative densities are

A
pi =
Y; £ aX; + b fori € {0,1} for some a € R and b € R?. Then, TV(Py,,Py,) = TV (Px,, Px, ).

Proof. Recall that TV(Px, Py) = supgcp(x) (P{X € E} — P{Y € E}). Therefore, we can write
1 1
TV(Py,, Py,) = sup (P{XO €-(E— b)} {Xl €-(E— b)}) = TV(Py,, Px,)-
E€B(X) a
O
Theorem A.2. For any sequence of distributions P,Q € M(X)N, we have following equivalences as m — oo,
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TV(PE™, Q2M) — 0 <= H(Pp, Qm) :o<%), TV(PE™,Q2M) —1 <= H2(Pp,Qm) :w<%>,

Proof. For convenience, we assume that observation X : 3 — X™ is i.id. with common distribution

Qm € M(X). Then,

dp dp, dp m
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Recall that TV(PS™, Q%™) — 0if and only if H2(Ps™, Q%) — 0, which happens precisely when H?( Py, Qi) =
o(1). Similarly, TV(PS™,Q%™) — 1 if and only if H?(P2™,Q%™) — 2, which is further equivalent to
H? (P, Qm) = w(57). O
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