Lecture-29: Assouad’s lemma

1 Assouad’s Lemma

We saw that Le Cam’s two-point method effectively only perturbs one out of d coordinates, leaving
the remaining d — 1 coordinates unexplored; this is the source of its suboptimality. In order to obtain
a lower bound that scales with the dimension, it is necessary to randomize all d coordinates. Our next
topic Assouad’s Lemma is an extension in this direction.

Definition 1.1 (Hamming distance). We define the hypercube as the space of d length binary strings
Hy 2 {0,1}". Hamming distance £y : Hy x Hy — {0,...,d} is defined as ¢ (b,b') £ ¥, l{bﬁéb,_} for
any binary strings b,b’ € Hy.

Theorem 1.2 (Assouad’s lemma). Consider a simple statistical decision theory setting with ® = © where

(a) the loss function £ : ® x ® — Ry that is an a-metric on parameter space ®, and

(b) the parameter space © contains a subset @ = {6, € © :b € H,} indexed by the hypercube Hy such that
0(6p,0p) = BLy (b, V') forall b # b' € Hy and some B > 0.

Then, the minimax risk R*(®) £ inf;sup,.q Eq/(0,0) satisfies

SBd
R(©) > (1  max TV(Peh,Peb,))- 1)

Proof. We lower bound the minimax risk with the Bayes risk and that with the minimum risk for the
uniform prior over ®. Given any estimator §(X), define 5(X) € argminycy s (6(X),6). Then for any

be Hy,
 Be(b(X0,5) < 00y, 80) < (£(65,0X) + £O(X),68,)) < 20£(0(X), ).

Let B: Q) — Hj; be a discrete uniform random variable, and we have a Markov chain B — 63
X — B. Then lower bounding the minimum average probability of error P{B )#Bi} > % 1-—
TV(Px|p,—0, Px|p,=1)) in binary hypothesis testing for each i € [d], we obtain

%

d
P{Bi(X) # B} > 432 1 —TV(Pxp,—0, Px|B,=1))-

=

E(0(X),05) > L Bt (B(x),B) = £

1

i

Lpenb;=0 Pxje, P5(b)
From the Bayes’ theorem, we have Pxp._o = = ZPBF? L = 2d T YbeH,:b;—0 Po, - Similarly, we have

Pyp—1 = zdlj Y veH,:b;—1Po,- Recall that f-divergence is convex in both arguments, and hence the total
variation distance is convex in both arguments. Therefore, the total variation term for each i € [d] can
be upper bounded as

1 1
TV(Px|g,=0, Pxjp=1) = Tv(zd 1 Z P9b'2d 1 Z Peb) - Z TV(PGb’P%’)
beHy:b;=0 beHy:b; b b €Hy:b' —b=e;

Since U4 {(b,b') € H2: V' —b=e¢;} = {(b,l') € H%: £y (b,b') = 1}, we obtain that for each i € [d]

TV(Px|g—0 Pxjp=1) < max  TV(Py, Py, ) <

TV(Py Py ).
b,b' €Hy:b' —b=¢; (P, Gh’)

max
b,hIEHdeH(b,b/):l

Hence, the result follows. O



Example 1.3 (d-dimensional GLM). Consider i.i.d. observation sample X : ) — X" with common
distribution \(6,1;) for § € ® £ R?. Considering the sufficient statistic X = Ly | X;, the model is

simply {N(G,%Id) S IR}. We observe that /m(X — 6y) ~ N (v/m(6 — o), 1;). Let 0 = \/m(6; —
6p). From the shift and scale invariance of the total variation distance and rotational invariance of
isotropic Gaussians, we have

TV(N (B0, L), N (81, 1) = TY(N (0,1), N (6,1)) = TV(N (0, 1), N ([6]}, 1).

Consider the discrete parameter 8, = eb € ©, for each binary string b in hypercube Hy and € > 0.
For the quadratic loss £: @ x ® — R and b,b’ € H;, we have

d d
2
08y, 0) = (185 — Oyl = €* b — V', =€ ) (b = b)* = € }_ 1, sy =€*n(b,).
i=1 i=1 '

Applying Theorem [1.2| with B = €2, using the fact that loss function / is a 2-metric on ®, observ-

ing ||/m(0y — 6y)||, = ev/m+\/Cy(b,b), defining s = e/m, from the invariance of total variation
distance under scaling and shifting, and rotational invariance of total variation for Gaussian distri-
bution, we get

e

R* > = max
8 b,b' €Hy:lp (b,b')=1

TV(N(eb,;Id),N(eb’,;lld))) = 22—15 (1 -~ TV(N(O,l),N(S,l))) :

Recall that 1 — TV(AN(0,1),N (s,1)) = Q($§) and sup,. ,35>Q(5) = ¢ for some absolute constant
¢ =~ 0.083. Therefore, we have R* > f—d

Next, let’s consider the loss function ¢(0,60') = || — ¢’||, for all 6,6’ € @. In the same setup as
before where 6, = €b for each b € H; and some € > 0. Then, we have

d
0y — Oy oo = € [b— /|| = esup b — bi| = esup 1,y >5y1 N = Sou(b,b).
165 — B | I I ie[g% i At d; (b2} = FUH

Applying Theorem with B = §, using the fact that loss function £ is a 1-metric on ®, observing
| v/m(6y — 0y) ||, = ev/m+/ Ly (b, V'), and defining s £ e/m, we get

/

s s c
R* >sup——(1-TV(N(0,1),N(s,1)) = Q =—,
s>0 4 m Z\F 2 ( ) 2y/m

where ¢’ £ sup,.,5Q(3) is a universal constant. Then Assouad’s lemma yields R* > \C}, which

lnd

does not depend on dimension d. In fact, R* < as shown before. In the next section, we will

discuss Fano’s method which can resolve this def1c1ency.

2 Assouad’s Lemma from the mutual information method

One can integrate the Assouad’s idea into the mutual information method.

Definition 2.1 (Binary entropy). Consider a binary random variable X : QO — X = {0,1} with probability
mass function (p,1 — p) € M(X) for any p € [0,1]. Then binary entropy 4 : [0,1] — [0,1] is defined as
h(p) = H(X) = —plnp — (1 — p)In(1 — p) forall p € [0,1].

Remark 1. Recall that the binary entropy function 4 is concave with unique maximum of In2 achieved
at p = .5, and increasing in p € [0,.5]. It follows that we can define the inverse map 1! : [0,In2] — [0,.5]
an increasing function.

Definition 2.2. We define f : [0,1] — [0,.5] for each t € [0,2In2] as f(t) = h~'((1 — t)In2) where h ! is
the inverse of the restricted binary entropy function.



Theorem 2.3 (Assouad). Consider a simple statistical decision theory setting with ® = ® where

(a) the loss function £ : ®@ x ® — Ry is an a-metric on parameter space ©, and

(b) the parameter space ©® contains a subset ® = {0, € ®:b € Hy} indexed by the hypercube Hy = {O,l}d
such that £(0y,0y) > BLy (b, V') forall b,b' € Hy and some p > 0.

Then, the minimax risk R*(®) £ infzsup,.o Egl(0,0) satisfies the following inequality in terms of f from

Definition

. pd
R (@)= f erif?’leTv(P@b’Peb’) . )

Proof. Let B: Q) — {0,1}d be an i.i.d. Bernoulli random vector with common mean . Using the same
“hypercube embedding B — 8p”, we have the Markov chain B — g — X — B. From the independence
of random vector B we haveﬂ foralli € [d],

I(B;X | B™") = I(B;X,B™") <I(B;;X,B\ () = I(By; B\ () + (Bi; X | B\() = I(B; X | By (3})-

We note that the mutual information is expressed as the Jensen-Shannon divergence as 2I(B; X | B\ (;;) =
JS(Px|B;—0, Px|p;=1)- From the upper bound on Jensen-Shannon divergence in (5), we obtain I(B;; X |
B\(iy) < TV(Pxp,—o, Px|p,—1) In2. This results, together with the application of the chain rule to mutual
information I(B; X) , and convexity of f-divergences in both arguments, leads to the following upper

bound ;
I(B; X Bi 1 < I(B;; X | Bygn) <dln2 m TV (Px 5, Pxip). 3
(B X | ) ; ; (Bi; X | \{z}) ZH(B/% 1 ( X|B X\B) 3)

=~

I(B;X) =
i
From Corollary it follows that for any estimate B(X) and 7 € [0,1] such that I(B;X) < d(1 — 1)In2,
we have E/ H(B, B) > dh—1 (tIn2). Substituting this fact in (3), we obtain from the mutual information
method

Il
—_

A 71 _
Ely(B,B(X)) = dh((1— eHggf;:lTV(PX|B/PX\B/))lnz) = df(ZH(fgg?;:lTV(PX\B/PmB/))-

Following the same steps as in the proof of Theorem 1.2} we obtain the result

; BB pd
E0(0(X),08) > o Elu(B(X),B) > 5 f EH%?:lTV(P%,Peb,) .

O

Remark 2. Note that (@) is slightly weaker than (I). Nevertheless, as seen in Example 31.4, Assouad’s
lemma is typically applied when the pairwise total variation is bounded away from one by a constant,
in which case (@) and (I) differ by only a constant factor. In all, we may summarize Assouad’s lemma as
a convenient method for bounding I(B; X) away from the full entropy (d bits) on the basis of distances
between Py|p corresponding to adjacent b’s.

A Evaluation of rate-distortion function

Definition A.1 (Rate distortion function). Recall that rate-distortion function R : Ry — R for a loss
. 2 . . A . &
function £: X x X — Ry is defined as R(D) = mfPX‘X:]EE(X,X)gD [(X;X).

A.1 Bernoulli source

Consider an i.i.d. observation X : Q — X" with common mean EX; = p and its estimate X : O — (")*"
for alphabets X = X £ {0,1}, with Hamming loss (5 (X, X) £ Y7, 1 [x£%)" We define the bit-error rate
or fraction of erroneously decoded bits as £(X,X) = %E 1 (X, X). By symmetry, we assume that p < %

Theorem A.2. Let h: [0,1] — [0,In2] be the binary entropy function defined in Definition then the rate-
distortion function defined in Definition[A.1|for a random variable X : Q0 — {0,1} with mean EX = p is

R(D) £ (h(p) — h(D))+.

1Equivalently, this also follows from the convexity of the mutual information in the channel (cf. Theorem 5.3).




Proof. Consider an estimate X £ 0 independent of X. Then, distortion E{(X,X) = P{X =1} = p, and
it follows that Dmax = p. Hence, we can assume D < p for otherwise there is nothing to show.
(a) For the converse, consider any PXl x such that [E/ (X,X) =P {X #* X } <D<<p< % It follows that

H(X) = h(p) and since  is increasing for p < 1/2, we have h(P{X # X}) < h(D). Then from the
fact that conditioning reduces entropy, we get
I(X;X)=H(X)-H(X|X)=H(X)-H(X®X|X)>H(X) - HX®X) >h(p) — h(D).

(b) In order to achieve this bound, we need to saturate the above chain of inequalities, in particular,
choose Pg |y so that the difference X & X is independent of X. Let X = X ® Z, where X ~ Ber(p’)
and is independent of Z ~ Ber(D), and p’ is such that the convolution gives exactly Ber(p), namely,
pP'+*D2p(1-D)+(1—-p)D=p,ie, p' = %. In other words, the backward channel Py, ¢ is
exactly BSC(D) and the resulting Pg|x is our choice of the forward channel Py y. For this forward
channel, we have E{(X,X) = P{X # X} = P{Z =1} = D. Then,

R(D) < I(X;X) = H(X) — H(X | ) = H(X) — H(Z) = h(p) — h(D).
O

Corollary A.3. Consider an i.i.d. Bernoulli random vector B : Q) — H; with common mean [EBy = %, a finite set
of parameters {6y, : b € Hy} C ® 2 RY, observation X : Q) — X under statistical model P(®), and loss function
:Hy x Hy — [0,1] defined as ((B, B(X)) £ Y01 (B, B) for any estimate B: Q0 — X*. Let h: [0, 1] — [0,In2]
be the binary entropy function defined in Definition for all p€(0,3]. If I(B;X) < d(1—7)In2 for some
T € [0,1], then for any estimator B(X), we have

E/((B,B) £ a]EeH(B,B) >7v 211 (1In2). 4)

Proof. We observe that B — 63 — X — B is a Markov chain. From the rate-distortion function of the
Bernoulli source in Section m we know that R(D) = d(In2 — i(D)) for p = 3. Recall that Dpmax <
p = 3 and h is increasing in [0,3]. It follows that R™!(y) = h~!(In2 — ¥) for y € [0,dIn2], and hence
R71(d(1 - 1)In2) = h~(rIn2) = 7’ for T € [0,1]. From the definition of rate distortion function, data
processing inequality for mutual information, and the monotonic decrease of rate distortion function,
we obtain

E/(B,B) = %]EKH(B,B) > R(I(B;B)) = R (I(B; X)) > R (d(1 - 7)In2) = 7.
O

Remark 3. Here is a more general strategy also implemented in the Gaussian case. Denote the optimal
forward channel from the achievability proof by P . and the associated backward channel by Pj

IX X
which is BSC(D). We need to show that there is no better PX\ x with P {X # X} < D and a smaller
mutual information. From the fact that P { X # X'} <DK % and monotonicity of 1 in [0, %], we obtain
X%
Px
> H(X) + ]Ep[h‘lD]l{X#X} + 11‘1(1 — D)H{X:X}] > h(p) — h(D)

I(Px, Pyjx) = D(Py 5]l Px | Pg) = D(Py 1Py 5 | Pg) + Epln

|X

Example A.4. For example, when p = %,D = .11, we have R(D) ~ % bits. In the Hamming game
described in Section 24.2 where we aim to compress 100 bits down to 50, we indeed can do this
while achieving 11% average distortion, compared to the naive scheme of storing half the string
and guessing on the other half, which achieves 25% average distortion. Note that we can also get
very tight non-asymptotic bounds, cf. Exercise V.3.

Remark 4. By WLLN, the distribution Px £ Ber(p)®™ concentrates near the Hamming sphere of radius

mp as m grows large. Recall that in proving Shannon’s rate distortion theorem, the optimal codebook
are drawn independently from Py £ Ber(p’)®™ with p’ = %. Note that p’ = 1 if p= 1 but p’ < p if
p < % In the latter case, the reconstruction points concentrate on a smaller sphere of radius mp’ and
none of them are typical source realizations, as illustrated in Figure 26.1.



B Jensen-Shannon Divergence

Definition B.1 (Jensen-Shannon divergence). Jensen-Shannon divergence JS : M(X) x M(X) — Ry
is an f divergence D¢ (P||Q) = ]EXNQf(g—S(X)) for P,Q € M(X) and a convex function f: X — Ry,

defined for x € Ry as

2x +In 2
x+1 x+1

f(x) = xIn

Remark 5. Let P,Q € M(X) and consider a uniform random variable M : 0 — {0,1} and channel P ,; =
MP + MQ € M(X) for each random M. We observe that Px = 1 (P + Q) € M(X) and

Py s _
| |M]]:]E[MIEXNpln _

X — qQ _1
I(M; X) = E[E[In —° 7511 + MEx..qln } = SI8(P,Q).

i0(X)+1

Exercise B.2. For the Jensen-Shannon divergence JS: M(X) x M(X) — R, show the following.
(a) Forall P,Q € M(X), we have

IS(P,Q) £ D(PI3 (P + Q) + D(QIA(P+ Q).

(b) Show that +/JS is a metric on the space of probability distributions M (X).

Exercise B.3. If D¢(P||Q) is an f-divergence, then show that D¢(AP + AQ||Q) and D¢(P||AP +
AQ) are f-divergences for all A € [0,1]. In particular, D¢(Q||P) = Df(P||Q) with f(x) £ xf(1).

Lemma B.4 (JS vs TV divergence). The full joint region is given by
24(3(1-TV(P,Q))ll3) <JS(P,Q) <TV(P,Q)2In2. 5)

Proof. Consider a uniform random variable M : QO — {0,1} and a channel Py|y; = MP + MQ € M(X).

(a) The lower bound is a consequence of Fano’s inequality. Consider a random estimator M(X) such
that M — X — M is a Markov chain. Consider two joint distributions Py, y yy = PpPx|mPy x and

Ry xm= PMPXPM|X. Under the joint distribution R, the random variables M, M are independent
and uniform, and hence R{M =M(X)} = R{M=M=0} + R{M=M=1} = }. Further, we
recall that P, = P {M(X) # M} = J(1 — TV(P,Q)) < 1. Therefore, we can write

I(M; M) = D(Py il Ry ) > d(P{M = NI} R (M= N1}) = d(P.] 3 ).

The result follows from the fact that JS(P,Q) = 2I(M; M) and the monotonicity of binary relative
entropy d in the first argument for [0, 1]

(b) For the upper bound, we notice that JS(P,Q) =2In2 — EpIn(1 + ‘Z,—%(X)) —EgIn(1 + d’%(X)). We
will show this for the case when X = {0,1} and P£ (1 — p,p) and Q = (1 — g,9) for some p,q € [0,1].
Let T 2 |p —g| € [0,1], then we have TV(P,Q) = t and JS(P,Q) = d(p| %5%) + d(q||’3%). From
symmetry of JS(P,Q), we can take q = p 4+ T without any loss of generality, and hence JS(P,Q) =
f(pr) 2d(pllp+ %) +d(p + tlp + 5). We define f(1) = SUP,c(0,1-].f (P, T), and observe that
f(p,0) =0 for all p € [0,1] and £(0,1) = d(0]|1) +d(1]|3) = 2In2. Therefore, we have f(0) =0
and f(1) = 2In2, and it follows from the convexity of d that f(7) < 27In2.

O

Lemma B.5. Consider an i.i.d. random vector B : Q) — Hy with common mean EBy = %, embedding b — 0}, €
© £ RY, and Markov chain B — 6 — X. Then, for each i € [d]

I(B;; X | B\ (i) < TV(Px|B,—0, Px|B,=1) In2.

Proof. The result follows from (5) by noting that the mutual information is expressed as the Jensen-
Shannon divergence as 21(B;; X | B\ y;y) =JS(Px|p,—0, Px|B,=1)- O
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