
Lecture-29: Assouad’s lemma

1 Assouad’s Lemma

We saw that Le Cam’s two-point method effectively only perturbs one out of d coordinates, leaving
the remaining d − 1 coordinates unexplored; this is the source of its suboptimality. In order to obtain
a lower bound that scales with the dimension, it is necessary to randomize all d coordinates. Our next
topic Assouad’s Lemma is an extension in this direction.

Definition 1.1 (Hamming distance). We define the hypercube as the space of d length binary strings
Hd ≜ {0,1}d. Hamming distance ℓH : Hd × Hd → {0, . . . ,d} is defined as ℓH(b,b′) ≜ ∑d

i=11{bi ̸=b′i} for

any binary strings b,b′ ∈ Hd.

Theorem 1.2 (Assouad’s lemma). Consider a simple statistical decision theory setting with Θ = Θ̂ where
(a) the loss function ℓ : Θ × Θ → R+ that is an α-metric on parameter space Θ, and
(b) the parameter space Θ contains a subset Θ′ ≜ {θb ∈ Θ : b ∈ Hd} indexed by the hypercube Hd such that

ℓ(θb,θb′)⩾ βℓH(b,b′) for all b ̸= b′ ∈ Hd and some β > 0.
Then, the minimax risk R∗(Θ)≜ infθ̂ supθ∈Θ Eθℓ(θ, θ̂) satisfies

R∗(Θ)⩾
βd
4α

(
1 − max

ℓH(b,b′)=1
TV(Pθb , Pθb′

)
)

. (1)

Proof. We lower bound the minimax risk with the Bayes risk and that with the minimum risk for the
uniform prior over Θ′. Given any estimator θ̂(X), define b̂(X) ∈ argminb∈Hd

ℓ(θ̂(X),θb). Then for any
b ∈ Hd,

βℓH(b̂(X),b)⩽ ℓ(θb̂(X),θb)⩽ α(ℓ(θb̂(X), θ̂(X)) + ℓ(θ̂(X),θb))⩽ 2αℓ(θ̂(X),θb).

Let B : Ω → Hd be a discrete uniform random variable, and we have a Markov chain B → θB →
X → B̂. Then lower bounding the minimum average probability of error P

{
B̂i(X) ̸= Bi

}
⩾ 1

2 (1 −
TV(PX|Bi=0, PX|Bi=1)) in binary hypothesis testing for each i ∈ [d], we obtain

Eℓ(θ̂(X),θB)⩾
β

2α
EℓH(B̂(X), B) =

β

2α

d

∑
i=1

P
{

B̂i(X) ̸= Bi
}
⩾

β

4α

d

∑
i=1

(1 − TV(PX|Bi=0, PX|Bi=1)).

From the Bayes’ theorem, we have PX|Bi=0 =
∑b∈Hd :bi=0 PX|θb

PB(b)
PBi=0

= 1
2d−1 ∑b∈Hd :bi=0 Pθb . Similarly, we have

PX|Bi=1 =
1

2d−1 ∑b∈Hd :bi=1 Pθb . Recall that f -divergence is convex in both arguments, and hence the total
variation distance is convex in both arguments. Therefore, the total variation term for each i ∈ [d] can
be upper bounded as

TV(PX|Bi=0, PX|Bi=1) = TV
( 1

2d−1 ∑
b∈Hd :bi=0

Pθb ,
1

2d−1 ∑
b∈Hd :bi=1

Pθb

)
⩽

1
2d−1 ∑

b,b′∈Hd :b′−b=ei

TV(Pθb , Pθb′
)

Since ∪d
i=1
{
(b,b′) ∈ H2

d : b′ − b = ei
}
=
{
(b,b′) ∈ H2

d : ℓH(b,b′) = 1
}

, we obtain that for each i ∈ [d]

TV(PX|Bi=0, PX|Bi=1)⩽ max
b,b′∈Hd :b′−b=ei

TV(Pθb , Pθb′
)⩽ max

b,b′∈Hd :ℓH(b,b′)=1
TV(Pθb , Pθb′

).

Hence, the result follows.
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Example 1.3 (d-dimensional GLM). Consider i.i.d. observation sample X : Ω → Xm with common
distribution N (θ, Id) for θ ∈ Θ ≜ Rd. Considering the sufficient statistic X̄ ≜ 1

m ∑m
i=1 Xi, the model is

simply
{
N (θ, 1

m Id) : θ ∈ R
}

. We observe that
√

m(X̄ − θ0) ∼ N (
√

m(θ − θ0), Id). Let θ ≜
√

m(θ1 −
θ0). From the shift and scale invariance of the total variation distance and rotational invariance of
isotropic Gaussians, we have

TV(N (θ0,
1
m

Id),N (θ1,
1
m

Id) = TV(N (0, Id),N (θ, Id)) = TV(N (0,1),N (∥θ∥2 ,1)).

Consider the discrete parameter θb ≜ ϵb ∈ Θ, for each binary string b in hypercube Hd and ϵ > 0.
For the quadratic loss ℓ : Θ × Θ → R+ and b,b′ ∈ Hd, we have

ℓ(θb,θb′)≜ ∥θb − θb′∥2
2 = ϵ2 ∥∥b − b′

∥∥2
2 = ϵ2

d

∑
i=1

(bi − b′i)
2 = ϵ2

d

∑
i=1

1{bi ̸=b′i} = ϵ2ℓH(b,b′).

Applying Theorem 1.2 with β = ϵ2, using the fact that loss function ℓ is a 2-metric on Θ, observ-
ing

∥∥√m(θb − θb′)
∥∥

2 = ϵ
√

m
√
ℓH(b,b′), defining s ≜ ϵ

√
m, from the invariance of total variation

distance under scaling and shifting, and rotational invariance of total variation for Gaussian distri-
bution, we get

R∗ ⩾
ϵ2d
8

(
1 − max

b,b′∈Hd :ℓH(b,b′)=1
TV
(
N (ϵb,

1
m

Id),N (ϵb′,
1
m

Id)
))

=
s2d
8m

(
1 − TV

(
N (0,1),N (s,1)

))
.

Recall that 1 − TV(N (0,1),N (s,1)) = Q( s
2 ) and sups>0

1
2 s2Q( s

2 ) = c for some absolute constant
c ≈ 0.083. Therefore, we have R∗ ⩾ cd

4m .
Next, let’s consider the loss function ℓ(θ,θ′) ≜ ∥θ − θ′∥∞ for all θ,θ′ ∈ Θ. In the same setup as

before where θb = ϵb for each b ∈ Hd and some ϵ > 0. Then, we have

∥θb − θb′∥∞ = ϵ
∥∥b − b′

∥∥ = ϵ sup
i∈[d]

∣∣bi − b′i
∣∣ = ϵ sup

i∈[d]
1{bi ̸=b′i} ⩾

ϵ

d

d

∑
i=1

1{bi ̸=b′i} =
ϵ

d
ℓH(b,b′).

Applying Theorem 1.2 with β = ϵ
d , using the fact that loss function ℓ is a 1-metric on Θ, observing∥∥√m(θb − θb′)

∥∥
2 = ϵ

√
m
√
ℓH(b,b′), and defining s ≜ ϵ

√
m, we get

R∗ ⩾ sup
s>0

s
4
√

m
(1 − TV(N (0,1),N (s,1)) =

1
2
√

m
sup
s>0

s
2

Q
( s

2

)
=

c′

2
√

m
,

where c′ ≜ sups>0
s
2 Q( s

2 ) is a universal constant. Then Assouad’s lemma yields R∗ ⩾ c′
2
√

m , which

does not depend on dimension d. In fact, R∗ ≍
√

lnd
m as shown before. In the next section, we will

discuss Fano’s method which can resolve this deficiency.

2 Assouad’s Lemma from the mutual information method

One can integrate the Assouad’s idea into the mutual information method.

Definition 2.1 (Binary entropy). Consider a binary random variable X : Ω →X≜ {0,1} with probability
mass function (p,1 − p) ∈ M(X) for any p ∈ [0,1]. Then binary entropy h : [0,1] → [0,1] is defined as
h(p)≜ H(X) = −p ln p − (1 − p) ln(1 − p) for all p ∈ [0,1].

Remark 1. Recall that the binary entropy function h is concave with unique maximum of ln2 achieved
at p = .5, and increasing in p ∈ [0, .5]. It follows that we can define the inverse map h−1 : [0, ln2]→ [0, .5]
an increasing function.

Definition 2.2. We define f : [0,1]→ [0, .5] for each t ∈ [0,2 ln2] as f (t)≜ h−1((1 − t) ln2) where h−1 is
the inverse of the restricted binary entropy function.
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Theorem 2.3 (Assouad). Consider a simple statistical decision theory setting with Θ = Θ̂ where
(a) the loss function ℓ : Θ × Θ → R+ is an α-metric on parameter space Θ, and
(b) the parameter space Θ contains a subset Θ′ ≜ {θb ∈ Θ : b ∈ Hd} indexed by the hypercube Hd ≜ {0,1}d

such that ℓ(θb,θb′)⩾ βℓH(b,b′) for all b,b′ ∈ Hd and some β > 0.
Then, the minimax risk R∗(Θ) ≜ infθ̂ supθ∈Θ Eθℓ(θ, θ̂) satisfies the following inequality in terms of f from
Definition 2.2,

R∗(Θ)⩾
βd
2α

f

(
max

ℓH(b,b′)=1
TV(Pθb , Pθb′

)

)
. (2)

Proof. Let B : Ω → {0,1}d be an i.i.d. Bernoulli random vector with common mean 1
2 . Using the same

“hypercube embedding B → θB”, we have the Markov chain B → θB → X → B̂. From the independence
of random vector B we have1 for all i ∈ [d],

I(Bi; X | Bi−1) = I(Bi; X, Bi−1)⩽ I(Bi; X, B\{i}) = I(Bi; B\{i}) + (Bi; X | B\{i}) = I(Bi; X | B\{i}).

We note that the mutual information is expressed as the Jensen-Shannon divergence as 2I(Bi; X | B\{i}) =
JS(PX|Bi=0, PX|Bi=1). From the upper bound on Jensen-Shannon divergence in (5), we obtain I(Bi; X |
B\{i})⩽ TV(PX|Bi=0, PX|Bi=1) ln2. This results, together with the application of the chain rule to mutual
information I(B; X) , and convexity of f -divergences in both arguments, leads to the following upper
bound

I(B; X) =
d

∑
i=1

I(Bi; X | Bi−1)⩽
d

∑
i=1

I(Bi; X | B\{i})⩽ d ln2 max
ℓH(B,B′)=1

TV(PX|B, PX|B′). (3)

From Corollary A.3, it follows that for any estimate B̂(X) and τ ∈ [0,1] such that I(B; X)⩽ d(1 − τ) ln2,
we have EℓH(B̂, B) ⩾ dh−1(τ ln2). Substituting this fact in (3), we obtain from the mutual information
method

EℓH(B, B̂(X))⩾ dh−1((1 − max
ℓH(B,B′)=1

TV(PX|B, PX|B′)) ln2) = d f
(

max
ℓH(B,B′)=1

TV(PX|B, PX|B′)
)

.

Following the same steps as in the proof of Theorem 1.2, we obtain the result

Eℓ(θ̂(X),θB)⩾
β

2α
EℓH(B̂(X), B)⩾

βd
2α

f

(
max

ℓH(b,b′)=1
TV(Pθb , Pθb′

)

)
.

Remark 2. Note that (2) is slightly weaker than (1). Nevertheless, as seen in Example 31.4, Assouad’s
lemma is typically applied when the pairwise total variation is bounded away from one by a constant,
in which case (2) and (1) differ by only a constant factor. In all, we may summarize Assouad’s lemma as
a convenient method for bounding I(B; X) away from the full entropy (d bits) on the basis of distances
between PX|B corresponding to adjacent b’s.

A Evaluation of rate-distortion function

Definition A.1 (Rate distortion function). Recall that rate-distortion function R : R+ → R for a loss
function ℓ : X× X̂→ R+ is defined as R(D)≜ infPX̂|X :Eℓ(X,X̂)⩽D I(X; X̂).

A.1 Bernoulli source

Consider an i.i.d. observation X : Ω →Xm with common mean EX1 = p and its estimate X̂ : Ω → (X̂m)X
m

for alphabets X= X̂≜ {0,1}, with Hamming loss ℓH(X, X̂)≜ ∑m
i=11{X ̸=X̂}. We define the bit-error rate

or fraction of erroneously decoded bits as ℓ(X, X̂)≜ 1
m ℓH(X, X̂). By symmetry, we assume that p ⩽ 1

2 .

Theorem A.2. Let h : [0,1] → [0, ln2] be the binary entropy function defined in Definition 2.1, then the rate-
distortion function defined in Definition A.1 for a random variable X : Ω → {0,1} with mean EX = p is

R(D)≜ (h(p)− h(D))+.
1Equivalently, this also follows from the convexity of the mutual information in the channel (cf. Theorem 5.3).
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Proof. Consider an estimate X̂ ≜ 0 independent of X. Then, distortion Eℓ(X, X̂) = P{X = 1} = p, and
it follows that Dmax = p. Hence, we can assume D ⩽ p for otherwise there is nothing to show.
(a) For the converse, consider any PX̂|X such that Eℓ(X, X̂) = P

{
X ̸= X̂

}
⩽ D ⩽ p ⩽ 1

2 . It follows that
H(X) = h(p) and since h is increasing for p ⩽ 1/2, we have h(P

{
X ̸= X̂

}
) ⩽ h(D). Then from the

fact that conditioning reduces entropy, we get

I(X; X̂) = H(X)− H(X | X̂) = H(X)− H(X ⊕ X̂ | X̂)⩾ H(X)− H(X ⊕ X̂)⩾ h(p)− h(D).

(b) In order to achieve this bound, we need to saturate the above chain of inequalities, in particular,
choose PX̂|X so that the difference X ⊕ X̂ is independent of X̂. Let X = X̂ ⊕ Z, where X̂ ∼ Ber(p′)
and is independent of Z ∼ Ber(D), and p′ is such that the convolution gives exactly Ber(p), namely,
p′ ∗ D ≜ p′(1 − D) + (1 − p′)D = p, i.e., p′ = p−D

1−2D . In other words, the backward channel PX|X̂ is
exactly BSC(D) and the resulting PX̂|X is our choice of the forward channel PX̂|X . For this forward
channel, we have Eℓ(X, X̂) = P

{
X ̸= X̂

}
= P{Z = 1} = D. Then,

R(D)⩽ I(X; X̂) = H(X)− H(X | X̂) = H(X)− H(Z) = h(p)− h(D).

Corollary A.3. Consider an i.i.d. Bernoulli random vector B : Ω → Hd with common mean EB1 =
1
2 , a finite set

of parameters {θb : b ∈ Hd} ⊂ Θ ≜ Rd, observation X : Ω → X under statistical model P(Θ), and loss function
ℓ : Hd × Hd → [0,1] defined as ℓ(B, B̂(X))≜ 1

d ℓH(B, B̂) for any estimate B̂ : Ω → XX. Let h : [0, 1
2 ]→ [0, ln2]

be the binary entropy function defined in Definition 2.1 for all p ∈ [0, 1
2 ]. If I(B; X) ⩽ d(1 − τ) ln2 for some

τ ∈ [0,1], then for any estimator B̂(X), we have

Eℓ(B, B̂)≜
1
d

EℓH(B̂, B)⩾ τ′ ≜ h−1(τ ln2). (4)

Proof. We observe that B → θB → X → B̂ is a Markov chain. From the rate-distortion function of the
Bernoulli source in Section A.1, we know that R(D) = d(ln2 − h(D)) for p = 1

2 . Recall that Dmax ⩽
p = 1

2 and h is increasing in [0, 1
2 ]. It follows that R−1(y) = h−1(ln2 − y

d ) for y ∈ [0,d ln2], and hence
R−1(d(1 − τ) ln2) = h−1(τ ln2) = τ′ for τ ∈ [0,1]. From the definition of rate distortion function, data
processing inequality for mutual information, and the monotonic decrease of rate distortion function,
we obtain

Eℓ(B, B̂) =
1
d

EℓH(B, B̂)⩾ R−1(I(B; B̂))⩾ R−1(I(B; X))⩾ R−1(d(1 − τ) ln2) = τ′.

Remark 3. Here is a more general strategy also implemented in the Gaussian case. Denote the optimal
forward channel from the achievability proof by P∗

X̂|X and the associated backward channel by P∗
X|X̂

which is BSC(D). We need to show that there is no better PX̂|X with P
{

X ̸= X̂
}
⩽ D and a smaller

mutual information. From the fact that P
{

X ̸= X̂
}
⩽ D ⩽ 1

2 and monotonicity of h in [0, 1
2 ], we obtain

I(PX , PX̂|X) = D(PX|X̂∥PX | PX̂) = D(PX|X̂∥P∗
X|X̂ | PX̂) + EP ln

P∗
X|X̂
PX

⩾ H(X) + EP[ln D1{X ̸=X̂} + ln(1 − D)1{X=X̂}]⩾ h(p)− h(D).

Example A.4. For example, when p = 1
2 , D = .11, we have R(D) ≈ 1

2 bits. In the Hamming game
described in Section 24.2 where we aim to compress 100 bits down to 50, we indeed can do this
while achieving 11% average distortion, compared to the naive scheme of storing half the string
and guessing on the other half, which achieves 25% average distortion. Note that we can also get
very tight non-asymptotic bounds, cf. Exercise V.3.

Remark 4. By WLLN, the distribution PX ≜ Ber(p)⊗m concentrates near the Hamming sphere of radius
mp as m grows large. Recall that in proving Shannon’s rate distortion theorem, the optimal codebook
are drawn independently from PX̂ ≜ Ber(p′)⊗m with p′ = p−D

1−2D . Note that p′ = 1
2 if p = 1

2 but p′ < p if
p < 1

2 . In the latter case, the reconstruction points concentrate on a smaller sphere of radius mp′ and
none of them are typical source realizations, as illustrated in Figure 26.1.
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B Jensen-Shannon Divergence

Definition B.1 (Jensen-Shannon divergence). Jensen-Shannon divergence JS : M(X)×M(X) → R+

is an f divergence D f (P∥Q) ≜ EX∼Q f ( dP
dQ (X)) for P, Q ∈ M(X) and a convex function f : X → R+,

defined for x ∈ R+ as

f (x)≜ x ln
2x

x + 1
+ ln

2
x + 1

.

Remark 5. Let P, Q ∈M(X) and consider a uniform random variable M : Ω →{0,1} and channel PX|M =

M̄P + MQ ∈M(X) for each random M. We observe that PX = 1
2 (P + Q) ∈M(X) and

I(M; X) = E[E[ln
dPX|M

dPX
| M]] = E

[
M̄EX∼P ln

2 dP
dQ (X)

dP
dQ (X) + 1

+ MEX∼Q ln
2

dP
dQ (X) + 1

]
=

1
2

JS(P, Q).

Exercise B.2. For the Jensen-Shannon divergence JS : M(X)×M(X)→ R+, show the following.
(a) For all P, Q ∈M(X), we have

JS(P, Q)≜ D(P∥1
2
(P + Q)) + D(Q∥1

2
(P + Q)).

(b) Show that
√

JS is a metric on the space of probability distributions M(X).

Exercise B.3. If D f (P∥Q) is an f -divergence, then show that D f (λP + λ̄Q∥Q) and D f (P∥λP +

λ̄Q) are f -divergences for all λ ∈ [0,1]. In particular, D f (Q∥P) = D f̃ (P∥Q) with f̃ (x)≜ x f ( 1
x ).

Lemma B.4 (JS vs TV divergence). The full joint region is given by

2d
(1

2
(1 − TV(P, Q))∥1

2
)⩽ JS(P, Q)⩽ TV(P, Q)2ln2. (5)

Proof. Consider a uniform random variable M : Ω → {0,1} and a channel PX|M = M̄P + MQ ∈M(X).
(a) The lower bound is a consequence of Fano’s inequality. Consider a random estimator M̂(X) such

that M → X → M̂ is a Markov chain. Consider two joint distributions PM,X,M̂ = PMPX|MPM̂|X and
RM,X,M̂ = PMPXPM̂|X . Under the joint distribution R, the random variables M, M̂ are independent

and uniform, and hence R
{

M = M̂(X)
}
= R

{
M = M̂ = 0

}
+ R

{
M = M̂ = 1

}
= 1

2 . Further, we
recall that Pe = P

{
M̂(X) ̸= M

}
= 1

2 (1 − TV(P, Q)) < 1
2 . Therefore, we can write

I(M; M̂) = D(PM,X,M̂∥RM,X,M̂)⩾ d(P
{

M = M̂
}
∥R
{

M = M̂
}
) = d

(
Pe∥

1
2

)
.

The result follows from the fact that JS(P, Q) = 2I(M; M̂) and the monotonicity of binary relative
entropy d in the first argument for [0, 1

2 ]

(b) For the upper bound, we notice that JS(P, Q) = 2ln2 − EP ln(1 + dQ
dP (X))− EQ ln(1 + dP

dQ (X)). We

will show this for the case when X≜ {0,1} and P ≜ (1− p, p) and Q ≜ (1− q,q) for some p,q ∈ [0,1].
Let τ ≜ |p − q| ∈ [0,1], then we have TV(P, Q) = τ and JS(P, Q) = d(p∥ p+q

2 ) + d(q∥ p+q
2 ). From

symmetry of JS(P, Q), we can take q = p + τ without any loss of generality, and hence JS(P, Q) =

f (p,τ) ≜ d(p∥p + τ
2 ) + d(p + τ∥p + τ

2 ). We define f (τ) ≜ supp∈[0,1−τ] f (p,τ), and observe that

f (p,0) = 0 for all p ∈ [0,1] and f (0,1) = d(0∥ 1
2 ) + d(1∥ 1

2 ) = 2ln2. Therefore, we have f (0) = 0
and f (1) = 2ln2, and it follows from the convexity of d that f (τ)⩽ 2τ ln2.

Lemma B.5. Consider an i.i.d. random vector B : Ω → Hd with common mean EB1 =
1
2 , embedding b 7→ θb ∈

Θ ≜ Rd, and Markov chain B → θB → X. Then, for each i ∈ [d]

I(Bi; X | B\{i})⩽ TV(PX|Bi=0, PX|Bi=1) ln2.

Proof. The result follows from (5) by noting that the mutual information is expressed as the Jensen-
Shannon divergence as 2I(Bi; X | B\{i}) = JS(PX|Bi=0, PX|Bi=1).
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