Lecture-30: Fano’s method

1 Fano’s method

Definition 1.1. Let (V,d) be a metric space and © C V, then an e-ball with centre v € V and radius

€ € Ry is defined as the closed set B(v,€) = {u € V :d(u,v) < €}.

(a) Wesay {vy,...,on} C Vis an e-covering or e-net of @ if ©® C Uil\ilB(vi,e). Equivalently, for all 6 € O,
there exists i € [N] such that d(6,v;) <.

(b) We say {01,...,0m} C © is an e-packing of © if min;; 16; — 9j|| > €; or equivalently, the set of balls
{B(6;,€/2) : j € [M]} are disjoint.

Definition 1.2. Consider a metric space (V,d) and a parameter space ® C V.
(a) The covering number is defined as N(©®,d,e) £ min {n € N : there exists an € — covering of © of size n}.
(b) The packing number is defined as M(®,d,€) = max{m € N : there exists an € — packing of @ of size m}.

We discuss another method for proving minimax lower bound by reduction to multiple hypothesis
testing. We call this program Fano’s method, based on the Fano’s inequality to show the impossibility
result in one of the steps.

Step 1. We assume that the loss function £ : ©@ x ® — R} is a metric on parameter space ©.

Step 2. Consider an e-packing @ £ {6; € @ :i € [M]} of the parameter space ©.

Step 3. Suppose we can show that given observation X one cannot reliably distinguish these hypothe-
sesin @'. Thatis, Py, {6(X) #6;} > 0.

Step 4. Then the best estimation error IE¢(9,0) is at least proportional to €.

Step 5. The impossibility of testing is often shown by applying Fano’s inequality in Corollary
which bounds the probability of error of testing in terms of the mutual information.

Theorem 1.3 (Fano). Let £: © x ® — R be a metric on parameter space ©. Fix an estimator . For any

TC®ande >0,
C(T) +In2

 InM(T,4e)’ @)

P{E(G,@) > g} >1

where C(T) £ sup .. () 1(6;X) is the capacity of the channel 6 — X with input space T. Consequently, for

anyr € N
. A €\’ C(T)+In2
infsupEg¢(6,8)" > su ) (1 - —=Z—).
e (6,6) TCQI;O(Z) ( lnM(T,E,e))

Proof. It suffices to show (T), since the second result follows from the first by applying Markov inequal-
ity to increasing function f : R; — R, defined as f(x) £ x” for any x € R; and r > 1. Fix T C @.
Consider an e-packing T/ = {6y,...,0p} C T such that min;jc(a £(0;,0;) > €. For each i € [M], we de-
fine § balls B(6;,5) = {0 € ©:£(6,,0) < 5}, and observe that { B(6;,5) :i € [M]} is a set of disjoint balls.
Let 0 : QO — T’ be uniformly distributed and X ~ Py conditioned on parameter 6. Given any estimator 8 :
Q — O, construct a test by rounding estimate 8 (X) to output 0 (X) = argmingcr ¢ (9,9({()). From the
triangle inequality for metric £ and definition of 6(X), we get £(6,0(X)) < £(8,0(X)) + £(6(X),0(X)) <
20(6,0(X)) for any 6 € T/, and thus

P{O#0(X)} =L o5y <ELyypinsey < P{00.000) > 2},

Recall that |T’| = M. The result follows from the application of Fano’s inequality from Corollary
to the Markov chain § — X — 6 — 6 with uniformly distributed 6 € T’ to lower bound P {6 # 6(X)},
using the definition of C(T) > I(6;X), and taking supremum over all e-packing T’ of T which is the
packing number M(T, ., €). O



Remark 1. In applying Fano’s method, since it is often difficult to evaluate the capacity C(T), it is useful
to recall from Theorem 5.9 that C(T) coincides with the KL radius of the set of distributions {Py: 6 € T},
namely, C(T) £ infg supy. D(Py||Q). As such, choosing any Q leads to an upper bound on the capacity.
As an application, we revisit the d-dimensional GLM in Corollary 28.8 under the /; loss for 1 < g < oo,
with the particular focus on the dependency on the dimension. For a different application in sparse
setting see Exercise VI.12.

Example 1.4. Consider GLM with i.i.d. sample size m, where Py = N (6, 1;)®™. Taking natural log-
arithms here and below, we have

P, 1

D(Py||Pyr) = IEXNPglndP (X) = SEx~py( X 6|5 X 63 H9 0'|)3-

In other words, KL-neighborhoods are ¢, balls. As such, we can apply Theorem. 1.3{to T = B,(0,p)
where B,(0,p) = {x eR?: 1%l ép} for some g > 1 and p > 0 to be specified. Then C(T) <

supgcr D(Py||Py) = %p?. To bound the packing number from below, we applying the volume bound
in Theorem 27.3,

L p'vol(B2(0,1)) _ (¢ pd \d
M(B2(0,p),I-l,,€) 2 e?vol(B,(0,1)) ~ > ( z\/g) :

for some constant c;, where the last step follows the volume formula (27.13) for £, balls. Choosing

1_1
o= \/% and € = %g pd 2, an application of Theoremyields the minimax lower bound for risk

1 1
C(T)+In2\Va _ c,d? (3 1 i di
_ sl R S >Cp—
2 Ps:-:lfo (2> (1 lnM(T,é,e)) = 2y/me? (4 2d lnz) > G Vm @)

for some constant C; depending on q. This is the same lower bound as that in (30.9) obtained via
the mutual information method plus the Shannon lower bound which is also volume-based.

Remark 2. For any g > 1, @) is rate-optimal since we can apply the MLE §(X) = X. Note that at g = oo,
the constant C; is still f1n1te since vol(Bs) = 27. However, for the special case of g = oo, (@) does not

depend on the dimension at all, as opposed to the correct dependency v/Ind shown in Corollary 28.8. In
fact, previously in Example 31.4 the application of Assouad’s lemma yields the same suboptimal result.
So is it possible to fix this looseness with Fano’s method? It turns out that the answer is yes and the
suboptimality is due to the volume bound on the metric entropy, which, as we have seen in Section
27.3, can be ineffective if € scales with dimension. Indeed, if we apply the tight bound of M(By, |||« €)

in (27.18 with € = \@ and p = /&4 h‘d for some absolute constants c,c¢’, we do get Reo 7 \/% as
desired.

Remark 3. It is sometimes convenient to further bound the KL radius by the KL diameter, since C (T) <
diamgy (T) £ supg g D(Pyr || Pg) (cf. Corollary 5.8). This suffices for Example 31.5.

Remark 4. In Theorem we actually lower bound the global minimax risk by that restricted on a
parameter subspace T C © for the purpose of controlling the mutual information, which is often difficult
to compute. For the GLM considered in Example 31.5, the KL divergence is proportional to squared ¢
distance and T is naturally chosen to be a Euclidean ball. For other models such as the covariance model
(Exercise VI.16) wherein the KL divergence is more complicated, the KL neighborhood T needs to be
chosen carefully. Later in Section 32.4 we will apply the same Fano’s method to the infinite-dimensional
problem of estimating smooth density.

n fact, in this case we can also choose the explicit packing {eey, ..., ee;}



A Fano’s inequality

Definition A.1 (Binary entropy and KL divergence). Consider binary random variables X,Y : () —
X £ {0,1} with respective probability mass functions (p,1— p),(g,1 — q) € M(X) for any p,q € [0,1].
Then binary entropy & : [0,1] — [0,1] is defined as h(p) £ H(X) = —pIlnp — (1 — p)In(1 — p) for all
p € [0,1], and the binary KL divergence is defined as d : [0,1] x [0,1] — Ry as d(p,q) = D(Px||Py) =
pint 4 (1 - p)In (- ; for all p,q € [0,1].

Theorem A.2 (Fano’s inequality). Let |X| = M < oo, X — Y — X be a Markov chain, and P, = P { X # X}.
Then the following are true

(@) HX|Y)<Fy(1 —P.) 2 P.In(M — 1) + h(P,).
() If Pmax = maxyex Px(x) >0, then I(X;Y) > (1 — Pe)lnﬁ — h(Pe) regardless of | X|.

Proof. Consider two joint distributions Py y ¢ = Px Py xPgy and Qyy ¢ =Q xPyPyy, and the data pro-
cessor (kernel) (X, Y,X )—1 (x£%}- We note that X and Y are independent under Q, and the observa-

tion Y has identical marginal Py = Qy under both P and Q. Further, the kernel PX\Y = QXIY’ i.e. the
estimator for X is same for both distributions based on the observation Y. We recall the KL divergence
data processing inequality for Markov chain X — Y — X, which implies

D(Pxy £lQxy 5) = D(Px llQx g) = d(P{X =X} [ Q{X =X}).

From the definition of KL divergence, mutual information, and joint distributions P, Q, we get

d
D(PxyllQxy,x) = Epln D(Px[|Qx) + I(X;Y) 2 d(P{X = X} |Q{X = X}).

(a) Let Ux € M(X) be a uniform distribution over X. Then for Qx = Uy, we obtain D(Px||Qx) =
InM — H(X) and since I(X;Y) = H(X) — H(X | Y), we get D(Px||Qx) + I(X;Y) =InM — H(X | Y).
Further, since X and Y are independent under Q, we get Q{X =X} =¥, v Q{X=X=1x} =
Yrex Qx(x)Qyg(x) = 3. It follows that

InM— H(X|Y) >d(Pe||1 - %) = ~h(P) + (1 - P)lnM + Peln .

(b) When Px = Qx, we get D(Px||Qx) =0and Q{X = X} =Y Px(x)Q¢ (x) < Pmax- Therefore,

[(X;Y) >d(1-P|Q{X=X})=—h(P) — (1-P)InQ{X =X} - P.InQ{X # X}

“h(P) + (1— P Q{Xlx} “h(P.) = (1= P)In Prax.
O

The following corollary of the previous result emphasizes its role in providing converses or impos-
sibility results for statistics and data transmission.

Corollary A.3 (Lower bound on average probability of error). Consider Markov chain W — X —Y — W,
where W is uniform on [M] = {1,...,M}. Then

IGY) +h(P) _ I(XGY) +1In2

L A _
SPW#EW}>1 InM ~ InM

Proof. Apply Theoremand the data processing for mutual information I(W; W) < I(X;Y). O
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