

Lecture-15: L^p convergence of random variables

1 L^p convergence

Definition 1.1 (L^p space). Consider a probability space (Ω, \mathcal{F}, P) . For any $p > 1$, we say that a random variable $X \in L^p$, if $\mathbb{E}|X|^p < \infty$, and we can define a norm

$$\|X\|_p = (\mathbb{E}|X|^p)^{\frac{1}{p}}.$$

Theorem 1.2 (Minkowski's inequality). Norm on the L^p satisfies the triangle inequality. That is, if $X, Y \in L^p$, then

$$\|X + Y\|_p \leq \|X\|_p + \|Y\|_p.$$

Proof. From the triangle equality $|X + Y| \leq |X| + |Y|$ for two random variables $X, Y \in L^p$, the linearity of expectation, and the Hölder inequality for pair of random variables $X, (X + Y)^{p-1}$ and $Y, (X + Y)^{p-1}$, we get

$$\mathbb{E}|X + Y|^p \leq \mathbb{E}|X||X + Y|^{p-1} + \mathbb{E}|Y||X + Y|^{p-1} \leq ((\mathbb{E}|X|^p)^{\frac{1}{p}} + (\mathbb{E}|Y|^p)^{\frac{1}{p}})(\mathbb{E}|X + Y|^p)^{1-\frac{1}{p}}.$$

It suffices to show that $\|X + Y\|_p$ is bounded if $\|X\|_p$ and $\|Y\|_p$ are bounded. From the convexity of $g(x) = |x|^p$ for $p \geq 1$, we get

$$|X + Y|^p \leq \frac{1}{2}|2X|^p + \frac{1}{2}|2Y|^p = 2^{p-1}(|X|^p + |Y|^p).$$

Taking expectation on both sides, it follows from the linearity of expectation, $\|X + Y\|_p \leq 2^{p-1}(\|X\|_p + \|Y\|_p)$. \square

Example 1.3 ($L^q \subseteq L^p$ for $q \geq p \geq 1$). Consider $q \geq p \geq 1$, and a random variable $X \in L^q$ defined on the probability space (Ω, \mathcal{F}, P) . Applying Hölder's inequality to the product of random variables $|X|^p \cdot 1$ with conjugate variables $p' \triangleq \frac{q}{p} \geq 1$ and $q' \triangleq \frac{q}{q-p} \geq 1$, we get the result

$$\mathbb{E}|X|^p = \mathbb{E}[|X|^{\frac{q}{p'}} \cdot 1] \leq (\mathbb{E}|X|^q)^{\frac{1}{p'}}.$$

Definition 1.4 (Convergence in L^p). A sequence $(X_n : n \in \mathbb{N})$ of random variables converges in L^p to a random variable X , if

$$\lim_n \mathbb{E}|X_n - X|^p = 0.$$

Example 1.5 (Mean square error). Consider a sequence of random variables $(X_n : n \in \mathbb{N})$ such that

$$m \triangleq \mathbb{E}X_n, \quad \rho_k \triangleq \text{cov}(X_n X_{n+k}) \text{ for all } n, k \in \mathbb{N}.$$

The **best linear predictor** of X_{n+1} based on X_1, \dots, X_n is given by $\hat{X}_{n+1} = \sum_{i=1}^n \alpha_i X_i$ for $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ such that the **mean square error** is minimized. That is,

$$\mathbb{E}|X_{n+1} - \hat{X}_{n+1}|^2 = \min_{\alpha \in \mathbb{R}^n} \mathbb{E}(X_{n+1} - \sum_{i=1}^n \alpha_i X_i)^2.$$

This is achieved for the coefficients $\alpha \in \mathbb{R}^n$, such that

$$\alpha_i \mathbb{E}[X_i^2] = \mathbb{E}[X_i X_{n+1}], i \in [n].$$

That is, $\alpha_i = \frac{\rho_{n+1-i} + m^2}{\rho_0 + m^2}$ for all $i \in [n]$.

Proposition 1.6 (Convergences L^p implies in probability). Consider a sequence of random variables $(X_n : n \in \mathbb{N})$ such that $\lim_n X_n = X$ in L^p , then $\lim_n X_n = X$ in probability.

Proof. Let $\epsilon > 0$, then from the Markov's inequality applied to random variable $|X_n - X|^p$, we have

$$P\{|X_n - X| > \epsilon\} \leq \frac{\mathbb{E}|X_n - X|^p}{\epsilon}.$$

□

Example 1.7 (Convergence in probability doesn't imply in L^p). Consider the probability space $([0, 1], \mathcal{B}([0, 1]), \lambda)$ such that $\lambda([a, b]) = b - a$ for all $0 \leq a \leq b \leq 1$. We define the scaled indicator random variable $X_n : \Omega \rightarrow \{0, 1\}$ such that

$$X_n(\omega) = 2^n \mathbb{1}_{[0, \frac{1}{n}]}(\omega).$$

Then, $\lim_n X_n = 0$ in probability, since for any $1 > \epsilon > 0$, we have

$$P\{|X_n| > \epsilon\} = \frac{1}{n}.$$

However, we see that $\mathbb{E}|X_n|^p = \frac{2^{np}}{n}$.

Theorem 1.8 (L^2 weak law of large numbers). Consider a sequence of uncorrelated random variables $(X_n : n \in \mathbb{N})$ such that $\mathbb{E}X_n = \mu$ and $\text{Var}(X_n) = \sigma^2$. Defining the sum $S_n \triangleq \sum_{i=1}^n X_i$ and the empirical mean $\bar{X}_n \triangleq \frac{S_n}{n}$, we have $\lim_n \bar{X}_n = \mu$ in L^2 and in probability.

Proof. This follows from the fact that

$$\mathbb{E}(\bar{X}_n - \mu)^2 = \frac{1}{n^2} \mathbb{E}(S_n - n\mu)^2 = \frac{\sigma^2}{n}.$$

Convergence in L^p implies convergence in probability, and hence the result holds. □

Example 1.9 (Convergence in L^p doesn't imply almost surely). Consider the probability space $([0, 1], \mathcal{B}([0, 1]), \lambda)$ such that $\lambda([a, b]) = b - a$ for all $0 \leq a \leq b \leq 1$. For each $k \in \mathbb{N}$, we consider the sequence $S_k = \sum_{i=1}^k i$, and define integer intervals $I_k \triangleq \{S_{k-1} + 1, \dots, S_k\}$. Clearly, the intervals $(I_k : k \in \mathbb{N})$ partition the natural numbers, and each $n \in \mathbb{N}$ lies in some I_k , such that $n = S_{k-1} + i$ for $i \in [k]$. Therefore, for each $n \in \mathbb{N}$, we define indicator random variable $X_n : \Omega \rightarrow \{0, 1\}$ such that

$$X_n(\omega) = \mathbb{1}_{[\frac{i-1}{k}, \frac{i}{k}]}(\omega).$$

For any $\omega \in [0, 1]$, we have $X_n(\omega) = 1$ for infinitely many values since there exist infinitely many (i, k) pairs such that $\frac{(i-1)}{k} \leq \omega \leq \frac{i}{k}$, and hence $\limsup_n X_n(\omega) = 1$ and hence $\lim_n X_n(\omega) \neq 0$. However, $\lim_n X_n(\omega) = 0$ in L^p , since

$$\mathbb{E}|X_n|^p = \lambda\{X_n(\omega) \neq 0\} = \frac{1}{k_n}.$$

2 Uniform integrability

Definition 2.1 (uniform integrability). A family $(X_t \in L^1 : t \in T)$ of random variables indexed by T is uniformly integrable if

$$\lim_{a \rightarrow \infty} \sup_{t \in T} \mathbb{E}[|X_t| \mathbb{1}_{\{|X_t| > a\}}] = 0.$$

Example 2.2 (Single element family). If $|T| = 1$, then the family is uniformly integrable, since $X_1 \in L^1$ and $\lim_a \mathbb{E}[|X_1| \mathbb{1}_{\{|X_1| > a\}}] = 0$. This is due to the fact that $(X_n \triangleq |X| \mathbb{1}_{\{|X| \leq n\}} : n \in \mathbb{N})$ is a sequence of increasing random variables $\lim_n X_n = X$. From monotone convergence theorem, we get $\lim_n \mathbb{E}|X_n| = \mathbb{E}|X|$. Therefore,

$$\lim_a \mathbb{E}[|X| \mathbb{1}_{\{|X| > a\}}] = \mathbb{E}|X| - \lim_a \mathbb{E}[|X| \mathbb{1}_{\{|X| \leq a\}}] = 0.$$

Proposition 2.3. Let $X \in L^p$ and $(A_n : n \in \mathbb{N}) \subset \mathcal{F}$ be a sequence of events such that $\lim_n P(A_n) = 0$, then

$$\lim_n \||X| \mathbb{1}_{A_n}\|_p = 0.$$

Example 2.4 (Dominated family). If there exists $Y \in L^1$ such that $\sup_{t \in T} |X_t| \leq |Y|$, then the family of random variables $(X_t : t \in T)$ is uniformly integrable. This is due to the fact that

$$\sup_{t \in T} \mathbb{E}[|X| \mathbb{1}_{\{|X| > a\}}] \leq \mathbb{E}[|Y| \mathbb{1}_{\{|Y| > a\}}].$$

Example 2.5 (Finite family). then the family of random variables $(X_t : t \in T)$ is uniformly integrable. This is due to the fact that $\sup_{t \in T} |X_t| \leq \sum_{t \in T} |X_t| \in L^1$.

Theorem 2.6 (Convergence in probability with uniform integrability implies in L^p). Consider a sequence of random variables $(X_n : n \in \mathbb{N}) \subset L^p$ for $p \geq 1$. Then the following are equivalent.

- (a) The sequence $(X_n : n \in \mathbb{N})$ converges in L^p , i.e. $\lim_n \mathbb{E}|X_n - X|^p = 0$.
- (b) The sequence $(X_n : n \in \mathbb{N})$ is Cauchy in L^p , i.e. $\lim_{m,n \rightarrow \infty} \mathbb{E}|X_n - X_m|^p = 0$.
- (c) $\lim_n X_n = X$ in probability and the sequence $(|X_n|^p : n \in \mathbb{N})$ is uniformly integrable.

Proof. For a random sequence $(X_n : n \in \mathbb{N})$ in L^p , we will show that (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a).

(a) \Rightarrow (b) : We assume the sequence $(X_n : n \in \mathbb{N})$ converges in L^p . Then, from Minkowski's inequality, we can write

$$(\mathbb{E}|X_n - X_m|^p)^{\frac{1}{p}} \leq (\mathbb{E}|X_n - X|^p)^{\frac{1}{p}} + (\mathbb{E}|X_m - X|^p)^{\frac{1}{p}}.$$

(b) \Rightarrow (c) : We assume that the sequence $(X_n : n \in \mathbb{N})$ is Cauchy in L^p , i.e. $\lim_{m,n \rightarrow \infty} \mathbb{E}|X_n - X_m|^p = 0$. Let $\epsilon > 0$, then for each $n \in \mathbb{N}$, there exists N_ϵ such that for all $n, m \geq N_\epsilon$

$$\mathbb{E}|X_n - X_m|^p \leq \frac{\epsilon}{2}.$$

Let $A_a = \{\omega \in \Omega : |X_n| > a\}$. Then, using triangle inequality and the fact that $\mathbb{1}_{A_a} \leq 1$, from the linearity and monotonicity of expectation, we can write for $n \geq N_\epsilon$

$$(\mathbb{E}[|X_n|^p \mathbb{1}_{\{|X_n|>a\}}])^{\frac{1}{p}} \leq (\mathbb{E}[|X_{N_\epsilon}|^p \mathbb{1}_{A_a}])^{\frac{1}{p}} + (\mathbb{E}[|X_n - X_{N_\epsilon}|^p])^{\frac{1}{p}} \leq (\mathbb{E}[|X_{N_\epsilon}|^p \mathbb{1}_{A_a}])^{\frac{1}{p}} + \frac{\epsilon}{2}.$$

Therefore, we can write $\sup_n \mathbb{E}[|X_n|^p \mathbb{1}_{\{|X_n|>a\}}] \leq \sup_{m \leq N_\epsilon} \mathbb{E}[|X_m|^p \mathbb{1}_{A_a}] + \frac{\epsilon}{2}$. Since $(|X_n|^p : n \leq N_\epsilon)$ is finite family of random variables in L^1 , it is uniformly integrable. Therefore, there exists $a_\epsilon \in \mathbb{R}_+$ such that $\sup_{m \leq N_\epsilon} (\mathbb{E}[|X_m|^p \mathbb{1}_{A_a}])^{\frac{1}{p}} < \frac{\epsilon}{2}$. Taking $a' = \max\{a, a_\epsilon\}$, we get $\sup_n (\mathbb{E}[|X_n|^p \mathbb{1}_{\{|X_n|>a'\}}])^{\frac{1}{p}} \leq \epsilon$. Since the choice of ϵ was arbitrary, it follows that

$$\lim_{a \rightarrow \infty} \sup_n (\mathbb{E}[|X_n|^p \mathbb{1}_{\{|X_n|>a'\}}])^{\frac{1}{p}} = 0.$$

The convergence in probability follows from the Markov inequality, i.e.

$$P\{|X_n - X_m|^p > \epsilon\} \leq \frac{1}{\epsilon} \mathbb{E}|X_n - X_m|^p.$$

(c) \implies (a) : Since the sequence $(X_n : n \in \mathbb{N})$ is convergent in probability to a random variable X , there exists a subsequence $(n_k : k \in \mathbb{N}) \subset \mathbb{N}$ such that $\lim_{k \rightarrow \infty} X_{n_k} = X$ a.s. Since $(|X_n|^p : n \in \mathbb{N})$ is a family of uniformly integrable sequence, by Fatou's Lemma

$$\mathbb{E}|X|^p \leq \liminf_k \mathbb{E}|X_{n_k}|^p \leq \sup_n \mathbb{E}|X_n|^p < \infty.$$

Therefore, $X \in L^1$, and we define $A_n(\epsilon) = \{|X_n - X| > \epsilon\}$ for any $\epsilon > 0$. From Minkowski's inequality, we get

$$\|X_n - X\|_p \leq \left\| (X_n - X) \mathbb{1}_{\{|X_n - X| \leq \epsilon\}} \right\|_p + \left\| X_n \mathbb{1}_{A_n(\epsilon)} \right\|_p + \left\| X \mathbb{1}_{A_n(\epsilon)} \right\|_p.$$

We can check that $\left\| (X_n - X) \mathbb{1}_{A_n(\epsilon)} \right\|_p \leq \epsilon$. Further, since $\lim_n X_n = X$ in probability, $(A_n : n \in \mathbb{N}) \subset \mathcal{F}$ is decreasing sequence of events, and since $X_n, X \in L^1$, we have $\lim_n \left\| X_n \mathbb{1}_{A_n(\epsilon)} \right\| = \lim_n \left\| X \mathbb{1}_{A_n(\epsilon)} \right\| = 0$.

□