Lecture-15: LY convergence of random variables

1 LP convergence

Definition 1.1 (L? space). Consider a probability space (Q0,F,P). For any p > 1, we say that a random
variable X € L?, if E|X|? < o0, and we can define a norm

1
IX1I, = (E|X[")7.

Theorem 1.2 (Minkowski’s inequality). Norm on the LP satisfies the triangle inequality. That is, if X,Y € L?,
then
X+ YA, < X, + 1Y),

Proof. From the triangle equality | X + Y| < |X| + |Y| for two random variables X,Y € L7, the linearity of
expectation, and the Holder inequality for pair of random variables X, (X + Y)? "' and Y, (X + Y)P~!, we
get

1 1 1
E|X+ Y|P SE|X|[X+ Y|P +E[Y][X+ Y[ < ((BIXIP)P + (E[Y]P)?)(E|X +Y]P)" 7.
It suffices to show that [ X + Y||, is bounded if || X]|, and [|Y(|, are bounded. From the convexity of g(x) =
|x|P for p > 1, we get
1 1
X+ Y|P < > 12X|P + 5 2Y|P =277 (|X|P + |Y|P).

Taking expectation on both sides, it follows from the linearity of expectation, || X + Y||, < 211X I, +
1Y1,)- =

Example 1.3 (L7 C L? forq > p > 1). Consider g4 > p > 1, and a random variable X € L7 defined on the
probability space (Q),F,P). Applying Holder’s inequality to the product of random variables | X|” - 1
with conjugate variables p’ £ % >land g £ # > 1, we get the result

a 1
E|X|" =E[IX]" -1] < (E[X|7)".

Definition 1.4 (Convergence in L”). A sequence (X, : n € N) of random variables converges in L to a
random variable X, if
LmE |X, — X[V =0.
n

Example 1.5 (Mean square error). Consider a sequence of random variables (X, : n € IN) such that
m2EX,, ok = cov (X, X, ) for all n,k € N.

The best linear predictor of X,, 1 based on Xy, ..., X, is given by X,,11 = Y a; X; for (ay,...,a,) € R"
such that the mean square error is minimized. That is,

o 2 . Z
E |Xn+l - Xn+1| = mll}]E(XTFFl - ZaiXi)z.
aeR i



This is achieved for the coefficients « € R", such that

& E[X?] = E[X;Xp11], i € [n].

Q 7-+m2 0
Thatis, a; = % for alli € [n].

Proposition 1.6 (Convergences L” implies in probability). Consider a sequence of random variables (X, : n €
IN) such that lim, X,, = X in L?, then lim,, X,, = X in probability.

Proof. Let e > 0, then from the Markov’s inequality applied to random variable |X, — X|”, we have

E|X, — X|’

P{|Xn—X| > e} < ==

Example 1.7 (Convergence in probability doesn’t imply in L”). Consider the probability space
([0,1],B([0,1]),A) such that A([a,b]) = b — a for all 0 < a < b < 1. We define the scaled indicator random
variable X, : O — {0,1} such that

Xn(w) = 2”]].[0’%] (CU)

Then, lim, X;, = 0 in probability, since for any 1 > € > 0, we have

1
P{|Xa| > e} = .

However, we see that E | X, |V = %

Theorem 1.8 (L? weak law of large numbers). Consider a sequence of uncorrelated random variables (X, : n €
IN) such that EX, = p and Var(X,) = 2. Defining the sum S, £ Y| X; and the empirical mean X, £ 51, we
have lim,, X, = p in L? and in probability.

Proof. This follows from the fact that

E(X, — )2 = S E(S 2 O
(n_ﬂ)—p<n_”ﬂ)—?-
Convergence in L” implies convergence in probability, and hence the result holds. O

Example 1.9 (Convergence in LP doesn’t imply almost surely). Consider the probability space
([0,1],B([0,1]),A) such that A([a,b]) =b —a for all 0 < a < b < 1. For each k € IN, we consider the se-
quence Sy = Zé‘zl i, and define integer intervals I, = {Sy_; +1,...,Sx}. Clearly, the intervals (I; : k € N)
partition the natural numbers, and each n € IN lies in some I}, such that n = Sy_1 + i for i € [k]. There-
fore, for each n € IN, we define indicator random variable X, : 3 — {0,1} such that

For any w € [0,1], we have X, (w) = 1 for infinitely many values since there exist infinitely many (i, k)

pairs such that (1;1) <w< %, and hence limsup, X, (w) = 1 and hence lim, X, (w) # 0. However,
lim, X, (w) = 01in LP, since

E Xy [P = A{Xn(w) #0} = ki



2 Uniform integrability

Definition 2.1 (uniform integrability). A family (X; € L' : t € T) of random variables indexed by T is
uniformly integrable if

lim suglE[IXd ]l{\X,|>u}] =0.
€

a—o0 ¢

Example 2.2 (Single element family). If |T| = 1, then the family is uniformly integrable, since X; € L!
and lim, E[|X1| 1{x,|>4}) = 0. This is due to the fact that (Xy 2 x| 1 x|<n} : m € N) is a sequence of

increasing random variables lim, X;, = X. From monotone convergence theorem, we get lim, E | X,,| =
Elim, | X} |. Therefore,

KmE[|X| 1¢x>q}] = E|X| — BmE[|X| 1{x)<q] =0.

Proposition 2.3. Let X € LP and (A, :n € N) C F be a sequence of events such that lim, P(A,) = 0, then

lim X[ 1, = 0.

Example 2.4 (Dominated family). If there exists Y € L! such that sup,_; | X;| < |Y/|, then the family of
random variables (X; : t € T) is uniformly integrable. This is due to the fact that

iug]EHX\ Lx>ap) SE[|Y|1(y|>q)]-
(S

Example 2.5 (Finite family). then the family of random variables (X; : t € T) is uniformly integrable.
This is due to the fact that sup, ¢ | X¢| < Lyer | X¢| € L.

Theorem 2.6 (Convergence in probability with uniform integrability implies in L”). Consider a sequence
of random variables (X, : n € IN) C L? for p > 1. Then the following are equivalent.

(a) The sequence (X, : n € N) converges in L?, i.e. lim, E |X, — X|V = 0.

(b) The sequence (X, : n € N) is Cauchy in LF, i.e. limy; n—00 E | Xy — Xin|P = 0.

(c) limy, X;, = X in probability and the sequence (|X,|P : n € IN) is uniformly integrable.

Proof. For a random sequence (X, : n € IN) in L?, we will show that (a) = (b) = (¢) = (a).

(a) = (b) : We assume the sequence (X, : n € IN) converges in L. Then, from Minkowski’s inequality, we can
write . ; )
(E|Xn — Xu|")? < (B[Xu = X|P)7 + (E | X — X))

(b) = (c): We assume that the sequence (X, : n € N) is Cauchy in L?, i.e. limy o E|Xy; — X;u|f = 0. Lete >0,
then for each n € IN, there exists N, such that for all n,m > N¢

E[Xy — Xm|" <

N ™



Let A; = {w € A:|Xy| > a}. Then, using triangle inequality and the fact that 1 4, < 1, from the linearity
and monotonicity of expectation, we can write for n > Ne

1
< (B[IXN [P 14,17 +

==

< (B[ XN 14,])7 + (B[ X0 — X |"])

==

€
(E[|Xn " 1 x,[>a}]) 5

Therefore, we can write sup, E[|Xu| 1{x,>a}] < sup,,n. E[|Xm|" 14,] + §. Since (|Xu|": 1 < Ne) is
finite family of random variables in L!, it is uniformly integrable. Therefore, there exists a. € R such

1 1
thatsup,, . (E[|Xm|"14,])7 < §. Taking a’ = max {a,ac}, we get sup, (E[|X,|" 1|x,|>q}])? <e. Since
the choice of € was arbitrary, it follows that

1
. 14 5o
}ggosgp(lE[anl Liix,>a3])? =0.

The convergence in probability follows from the Markov inequality, i.e.

1
P{|Xy — Xu|? > €} SEIE|Xn7Xm|7”.

: Since the sequence (X, : n € IN) is convergent in probability to a random variable X, there exists a

subsequence (11 : k € N) C N such that lim; X,,, = X a.s. Since (| X, |/ : n € N) is a family of uniformly
integrable sequence, by Fatou’s Lemma

E[X|" < liminfE |X,,|" < supE|Xy|" < .
n

Therefore, X € L', and we define A, (e) = {| X, — X| > €} for any € > 0. From Minkowski’s inequality,
we get

1 = X, < | (X0 = XL, _xpee)

[t

T HX]lAn(e) )

< e. Further, since lim, X,, = X in probability, (A, :n € N) C F
P

is decreasing sequence of events, and since X;;, X € L', we have lim,,

We can check that H (Xn — X)L age)

=0.

Xn ]lA,, (e) = limn X]lAy, (e)

OJ



	Lp convergence
	Uniform integrability

