
Lecture-15: Lp convergence of random variables

1 Lp convergence

Definition 1.1 (Lp space). Consider a probability space (Ω,F, P). For any p > 1, we say that a random
variable X ∈ Lp, if E |X|p < ∞, and we can define a norm

‖X‖p = (E |X|p)
1
p .

Theorem 1.2 (Minkowski’s inequality). Norm on the Lp satisfies the triangle inequality. That is, if X,Y ∈ Lp,
then

‖X + Y‖p 6 ‖X‖p + ‖Y‖p .

Proof. From the triangle equality |X + Y| 6 |X|+ |Y| for two random variables X,Y ∈ Lp, the linearity of
expectation, and the Hölder inequality for pair of random variables X, (X + Y)p−1 and Y, (X + Y)p−1, we
get

E |X + Y|p 6 E |X| |X + Y|p−1 + E |Y| |X + Y|p−1 6 ((E |X|p)
1
p + (E |Y|p)

1
p )(E |X + Y|p)1− 1

p .

It suffices to show that ‖X + Y‖p is bounded if ‖X‖p and ‖Y‖p are bounded. From the convexity of g(x) =
|x|p for p > 1, we get

|X + Y|p 6 1
2
|2X|p + .

1
2
|2Y|p = 2p−1(|X|p + |Y|p).

Taking expectation on both sides, it follows from the linearity of expectation, ‖X + Y‖p 6 2p−1(‖X‖p +

‖Y‖p).

Example 1.3 (Lq ⊆ Lp for q > p > 1). Consider q > p > 1, and a random variable X ∈ Lq defined on the
probability space (Ω,F, P). Applying Hölder’s inequality to the product of random variables |X|p · 1
with conjugate variables p′ , q

p > 1 and q′ , q
q−p > 1, we get the result

E |X|p = E[|X|
q
p′ · 1]6 (E |X|q)

1
p′ .

Definition 1.4 (Convergence in Lp). A sequence (Xn : n ∈N) of random variables converges in Lp to a
random variable X, if

lim
n

E |Xn − X|p = 0.

Example 1.5 (Mean square error). Consider a sequence of random variables (Xn : n ∈N) such that

m , EXn, ρk , cov(XnXn+k) for all n,k ∈N.

The best linear predictor of Xn+1 based on X1, . . . , Xn is given by X̂n+1 = ∑n
i=1 αiXi for (α1, . . . ,αn) ∈Rn

such that the mean square error is minimized. That is,

E
∣∣Xn+1 − X̂n+1

∣∣2 = min
α∈Rn

E(Xn+1 −
n

∑
i=1

αiXi)
2.
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This is achieved for the coefficients α ∈Rn, such that

αiE[X2
i ] = E[XiXn+1], i ∈ [n].

That is , αi =
ρn+1−i+m2

ρ0+m2 for all i ∈ [n].

Proposition 1.6 (Convergences Lp implies in probability). Consider a sequence of random variables (Xn : n ∈
N) such that limn Xn = X in Lp, then limn Xn = X in probability.

Proof. Let ε > 0, then from the Markov’s inequality applied to random variable |Xn − X|p, we have

P{|Xn − X| > ε}6 E |Xn − X|p

ε
.

Example 1.7 (Convergence in probability doesn’t imply in Lp). Consider the probability space
([0,1],B([0,1]),λ) such that λ([a,b]) = b− a for all 0 6 a 6 b 6 1. We define the scaled indicator random
variable Xn : Ω→ {0,1} such that

Xn(ω) = 2n
1[0, 1

n ]
(ω).

Then, limn Xn = 0 in probability, since for any 1 > ε > 0, we have

P{|Xn| > ε} = 1
n

.

However, we see that E |Xn|p = 2np

n .

Theorem 1.8 (L2 weak law of large numbers). Consider a sequence of uncorrelated random variables (Xn : n ∈
N) such that EXn = µ and Var(Xn) = σ2. Defining the sum Sn , ∑n

i=1 Xi and the empirical mean X̄n , Sn
n , we

have limn X̄n = µ in L2 and in probability.

Proof. This follows from the fact that

E(X̄n − µ)2 =
1
n2 E(Sn − nµ)2 =

σ2

n
.

Convergence in Lp implies convergence in probability, and hence the result holds.

Example 1.9 (Convergence in Lp doesn’t imply almost surely). Consider the probability space
([0,1],B([0,1]),λ) such that λ([a,b]) = b− a for all 0 6 a 6 b 6 1. For each k ∈N, we consider the se-
quence Sk = ∑k

i=1 i, and define integer intervals Ik , {Sk−1 + 1, . . . ,Sk}. Clearly, the intervals (Ik : k ∈N)
partition the natural numbers, and each n ∈N lies in some Ik, such that n = Sk−1 + i for i ∈ [k]. There-
fore, for each n ∈N, we define indicator random variable Xn : Ω→ {0,1} such that

Xn(ω) = 1[ i−1
k , i

k ]
(ω).

For any ω ∈ [0,1], we have Xn(ω) = 1 for infinitely many values since there exist infinitely many (i,k)
pairs such that (i−1)

k 6 ω 6 i
k , and hence limsupn Xn(ω) = 1 and hence limn Xn(ω) 6= 0. However,

limn Xn(ω) = 0 in Lp, since

E |Xn|p = λ{Xn(ω) 6= 0} = 1
kn

.
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2 Uniform integrability

Definition 2.1 (uniform integrability). A family (Xt ∈ L1 : t ∈ T) of random variables indexed by T is
uniformly integrable if

lim
a→∞

sup
t∈T

E[|Xt|1{|Xt |>a}] = 0.

Example 2.2 (Single element family). If |T| = 1, then the family is uniformly integrable, since X1 ∈ L1

and lima E[|X1|1{|Xt |>a}] = 0. This is due to the fact that (Xn , |X|1{|X|6n} : n ∈N) is a sequence of
increasing random variables limn Xn = X. From monotone convergence theorem, we get limn E |Xn| =
E limn |Xn|. Therefore,

lim
a

E[|X|1{|X|>a}] = E |X| − lim
a

E[|X|1{|X|6a}] = 0.

Proposition 2.3. Let X ∈ Lp and (An : n ∈N) ⊂ F be a sequence of events such that limn P(An) = 0, then

lim
n
‖|X|1An‖p = 0.

Example 2.4 (Dominated family). If there exists Y ∈ L1 such that supt∈T |Xt| 6 |Y|, then the family of
random variables (Xt : t ∈ T) is uniformly integrable. This is due to the fact that

sup
t∈T

E[|X|1{|X|>a}]6 E[|Y|1{|Y|>a}].

Example 2.5 (Finite family). then the family of random variables (Xt : t ∈ T) is uniformly integrable.
This is due to the fact that supt∈T |Xt|6 ∑t∈T |Xt| ∈ L1.

Theorem 2.6 (Convergence in probability with uniform integrability implies in Lp). Consider a sequence
of random variables (Xn : n ∈N) ⊂ Lp for p > 1. Then the following are equivalent.

(a) The sequence (Xn : n ∈N) converges in Lp, i.e. limn E |Xn − X|p = 0.

(b) The sequence (Xn : n ∈N) is Cauchy in Lp, i.e. limm,n→∞ E |Xn − Xm|p = 0.

(c) limn Xn = X in probability and the sequence (|Xn|p : n ∈N) is uniformly integrable.

Proof. For a random sequence (Xn : n ∈N) in Lp, we will show that (a) =⇒ (b) =⇒ (c) =⇒ (a).

(a) =⇒ (b) : We assume the sequence (Xn : n ∈N) converges in Lp. Then, from Minkowski’s inequality, we can
write

(E |Xn − Xm|p)
1
p 6 (E |Xn − X|p)

1
p + (E |Xm − X|p)

1
p .

(b) =⇒ (c) : We assume that the sequence (Xn : n ∈N) is Cauchy in Lp, i.e. limm,n→∞ E |Xn − Xm|p = 0. Let ε > 0,
then for each n ∈N, there exists Nε such that for all n,m > Nε

E |Xn − Xm|p 6
ε

2
.
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Let Aa = {ω ∈ A : |Xn| > a}. Then, using triangle inequality and the fact that 1Aa 6 1, from the linearity
and monotonicity of expectation, we can write for n > Nε

(E[|Xn|p1{|Xn |>a}])
1
p 6 (E[|XNε |

p
1Aa ])

1
p + (E[|Xn − XNε |

p])
1
p 6 (E[|XNε |

p
1Aa ])

1
p +

ε

2
.

Therefore, we can write supn E[|Xn|p1{|Xn |>a}] 6 supm6Nε
E[|Xm|p1Aa ] +

ε
2 . Since (|Xn|p : n 6 Nε) is

finite family of random variables in L1, it is uniformly integrable. Therefore, there exists aε ∈ R+ such

that supm6Nε
(E[|Xm|p1Aa ])

1
p < ε

2 . Taking a′ = max{a, aε}, we get supn(E[|Xn|p1{|Xn |>a′}])
1
p 6 ε. Since

the choice of ε was arbitrary, it follows that

lim
a→∞

sup
n
(E[|Xn|p1{|Xn |>a′}])

1
p = 0.

The convergence in probability follows from the Markov inequality, i.e.

P
{
|Xn − Xm|p > ε

}
6

1
ε

E |Xn − Xm|p .

(c) =⇒ (a) : Since the sequence (Xn : n ∈ N) is convergent in probability to a random variable X, there exists a
subsequence (nk : k ∈N)⊂N such that limk Xnk = X a.s. Since (|Xn|p : n ∈N) is a family of uniformly
integrable sequence, by Fatou’s Lemma

E |X|p 6 liminf
k

E
∣∣Xnk

∣∣p 6 sup
n

E |Xn|p < ∞.

Therefore, X ∈ L1, and we define An(ε) = {|Xn − X| > ε} for any ε > 0. From Minkowski’s inequality,
we get

‖Xn − X‖p 6
∥∥∥(Xn − X)1{|Xn−X|p6ε}

∥∥∥
p
+

∥∥∥Xn1An(ε)

∥∥∥
p
+

∥∥∥X1An(ε)

∥∥∥
p

.

We can check that
∥∥∥(Xn − X)1Ac

n(ε)

∥∥∥
p
6 ε. Further, since limn Xn = X in probability, (An : n ∈N) ⊂ F

is decreasing sequence of events, and since Xn, X ∈ L1, we have limn

∥∥∥Xn1An(ε)

∥∥∥= limn

∥∥∥X1An(ε)

∥∥∥= 0.
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