Lecture-03: Independence

1 Independence

Definition 1.1 (Independence of events). For a probability space (Q2,F,P), a family of events (A; € F:i € I)
is said to be independent, if for any finite set F C I, we have

P(NiepAi) = [P(A)).
ieF

Remark 1. The certain event () and the impossible event @ are always independent to every event A € J.

Example 1.2 (Two coin tosses). Consider two coin tosses, such that the sample space is () =
{HH,HT,TH,TT}, and the event space is F = 2. Tt suffices to define a probability function P : F —
[0,1] on the sample space. We define one such probability function P, such that
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P({HH}) = P({HT}) = P({TH}) = P({TT}) = ;.

Let event A; = {HH,HT} and B, £ {HH,TH} correspond to getting a head on the first or the second
toss respectively.

From the defined probability function, we obtain the probability of getting a tail on the first or the
second toss is 3, and identical to the probability of getting a head on the first or the second toss. That is,
P(A;) = P(A;) = ] and the intersecting event A; N Ay = { HH} with the probability P(A; N Ay) = 1.
That is, for events A1, A, € F, we have

P(A1N Ay) = P(A1)P(Az).

That is, events A; and A, are independent.

Example 1.3 (Countably infinite coin tosses). Consider a sequence of coin tosses, such that the sample
space is Q) = {H, T}N. For set of outcomes E, £ {w € Q: w, = H}, we consider an event space gener-
ated by 2 ¢({E, : n € N}). We define a probability function P : ¥ — [0,1] by P(N;crE;) = p!f! for any
finite subset F C IN. By definition, (E, : n € IN) is a sequence of independent events.

We observe that the set of outcomes corresponding to at least one head in first n outcomes

A2 {weQ:w;=Hforsomeic [n]} =U" E €T,
and set of outcomes corresponding to first head at the nth outcome

Bp2{weQ:iw==wy1=T,w=H}=n"]ENE, €T

In particular this implies that o ({A, : n € N}) CFand ¢({B, : n € N}) C F. We can show that P(A,) =
1—(1—p)"and P(B,) = p(1—p)" ! forn € N.



Let F,, be the event space generate by the first n coin tosses, i.e. F, = ¢({E;:i € [n]}). Then, we
can show that F = o({F,:n € N}). For any w € Q), we can define the number of heads in first n
trials by k, £ Yiql {w;=H} Then, we observe that any event A € J;, can be written as union of N}"_; C;
where C; = E; or Ef. That is, we can specify the first n outcomes for each w € A. Since the probability
P(N,C) =TT 1P( i), we have

Z Pk" n kn(w ).

weA

Example 1.4 (Counter example). Consider a probability space ((),F,P) and the events Aj, Ay, A3 € F.
The condition P(A; N Ay N Az) = P(A1)P(Ay)P(As3) is not sufficient to guarantee independence of the
three events. In particular, we see that if

P(A; N Ay N A3) = P(A1)P(A;)P(A3), P(A1 N Ay N AS) # P(A1)P(Az)P(AS),

then P(Al ﬂAZ) = P(A1 NA N Ag) I P(A1 N A; ﬂAg) £ P(Al)P(Az).

Definition 1.5. A family of collections of events (A; C F :i € I) is called independent, if for any finite set
FCTland A; € A; foralli € F, we have
NieF A HP

ieF

2 Law of Total Probability

Theorem 2.1 (Law of total probability). For a probability space (Q),F,P), consider a sequence of events B =
(By € F:n € N) that partitions the sample space Q), i.e. By, N\ By, = @ for all m # n, and U,eNBy, = Q. Then, for
any event A € F, we have
P(A)= Y P(ANB,).
nelN
Proof. We can expand any event A € F in terms of any partition B of the sample space (2 as

A=ANQ=AN(UpenBn) = Unen (AN By).

From the mutual disjointness of the events (B, € F:n € IN), it follows that the sequence (AN B, € F:n € N)
is mutually disjoint. The result follows from the countable additivity of probability of disjoint events.  [J

3 Conditional Probability

Consider N trials of a random experiment over an outcome space () and an event space F. Let w; € Q)
denote the outcome of the experiment of the nth trial. Consider two events A, B € F and denote the number
of times event A and event B occurs by N(A) and N(B) respectively. We denote the number of times both
events A and B occurred by N(A N B). Then, we can write these numbers in terms of indicator functions as

N N N
A) =Y Lig.cap N(B) =) 1iu,ch}r N(ANB) =) Iyy,cans}-
n=1 n=1 n=1

We denote the relative frequency of events A, B, AN Bin N trials by NI(\? ), NI(\]B) , N(‘?\pB) respectively. We can

find the relative frequency of events A, on the trials where B occurred as

M&2  N@Ans)
N



Inspired by the relative frequency, we define the conditional probability function conditioned on events.

Definition 3.1. Fix an event B € F such that P(B) > 0, we can define the conditional probability P(-|B) :
F — [0,1] of any event A € F conditioned on the event B as
P(ANB)

P(B)
Lemma 3.2 (Conditional probability). For any event B € § such that P(B) > 0, the conditional probability
P(-|B) : ¥ — [0,1] is a probability measure on space (Q), F).

P(A|B) =

Proof. We will show that the conditional probability satisfies all four axioms of a probability measure.
Non-negativity: For all events A € F, we have P(A|B) > 0 since P(ANB) > 0.

c-additivity: For an infinite sequence of mutually disjoint events (A; € F:i € IN) such that A;NA; =@
for all i # j, we have P(UjenA;i|B) = Yjen P(A;|B). This follows from disjointness of the sequence
(AiNBeTJ:icN).
Certainty: Since QN B = B, we have P(Q)|B) = 1.
O

Remark 2. For two independent events A,B € F such that P(A N B) > 0, we have P(A|B) = P(A) and
P(B|A) = P(B). If either P(A) =0 or P(B) =0, then P(AN B) =0.

Remark 3. For any partition B of the sample space (), if P(B,;) > 0 for all n € IN, then from the law of total
probability and the definition of conditional probability, we have

P(A)=Y_ P(A|B,)P(By).

nelN

4 Conditional Independence

Definition 4.1 (Conditional independence of events). For a probability space (), F,P), a family of events
(A; € F:i€I)is said to be conditionally independent given an event C € J such that P(C) > 0, if for any
finite set F C I, we have
P(NicrAi|C) =] [ P(Ai|C).
ieF
Remark 4. Let C € F be an event such that P(C) > 0 Two events A,B € J are said to be conditionally
independent given event C, if
P(ANB|C) = P(A|C)P(B|C).
If the event C = (), it implies that A, B are independent events.
Remark 5. Two events may be independent, but not conditionally independent and vice versa.

Example 4.2. Consider two independent events A,B € F such that P(ANB) >0 and P(AUB) < 1.
Then the events A and B are not conditionally independent given A U B. To see this, we observe that
P((ANB)N(AUB)) P(ANB) P(A)P(B)

P(ANB|AUB) = FTAUE) = S(AUE,  BLAUD) — P(A|AUB)P(B).

We further observe that P(B|A U B) = 25 P(B) and hence P(ANB|AUB) # P(A|AUB)P(B|AU
P(AUB)
B).

Example 4.3. Consider two non-independent events A, B € F such that P(A) > 0. Then the events A
and B are conditionally independent given A. To see this, we observe that

P(ANB)

P(ANB|A) = P(A)

= P(B|A)P(A]A).
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