Lecture-05: Random Vectors

1 Random vectors

Definition 1.1 (Projection). For a vector x € IR”, we can define 77; : R” — R is the projection of an n-length
vector onto its i-th component, such that 77;(x) = x;.

Definition 1.2. The Borel sigma algebra over space R” is defined as the smallest sigma algebra generated
by the family (71, 1(By) : x € R,i € [n]) and is denoted by B(R"). The elements of the Borel sigma algebra

are called Borel slets.

Remark 1. For a subset A C R and projection 77; : R* — R, we can write

T A)={xeR":x;c A} =R x...A---xR.
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It follows that the function 7r; : R” — R is a Borel measurable function.

Definition 1.3 (Random vectors). Consider a probability space (), F,P) and a finite n € N. A random
vector X : () — IR" is a mapping from the sample space to an n-length real-valued vector, such that for any
x € R", the event

Ax(x) 2{w e Q: X (w) < xq,..., Xp(w) < xp} = ﬂ?lefl(—oo,xi] €F.

We say that the random vector X is F-measurable.

Example 1.4 (Tuple of indicators). Consider a probability space (O, F,P), a finite n € IN, and events
Aj,..., Ay € F. We define a mapping X : QO — {0,1}" by X;(w) £ 14 (w) for all outcomes w € Q. Let
x € R, then we can write Ax(x) =N/, ]l/gi1 (—o90,x;]. Recall that

Q, x2>1,
]lgil(—OO,Xi] = Af, X; € [0,1),
0, x;<0.

It follows that the inverse image Ax(x) lies in ¥, and hence X is an F-measurable random vector.

Theorem 1.5. Consider a probability space (Q0,F,P), and a finite n € N. A mapping X : QO — R" is a random
vector if and only if X; £ 7t; 0 X : QO — R random variables for all i € [n].

Proof. We will first show that X : O — R" implies that 77; o X is a random variable for any i € [n]. For any
i € [n] and x; € R, we take x = (9,...,x;,...,00). This implies that B = n;l(—oo,xi} =R x...(—00,x;] -+ X
R € B(R"). Further, defining Ay, (x;) = Xi’1 (—o0,x;], we observe from the definition of random vectors that

Ax,(x;) =X tom H(—oo,x;] = X 1(B) = Ax(x) € 7. 1)
We will next show that if X; : Q — R is a random variable for all i € [1], then X = (X1,...,X;) : Q — R"

is a random vector. For any x € R", we have Ay, (x;) = X; !(—o0,x;] € F for all i € [n], from the definition

of random variables. From the closure of event set under countable intersections, we have
Ax(x) = NIy Ax, (%) € 7. @
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1.1 Distribution of random vectors

Definition 1.6. Consider a probability space ((),F,P) and a finite n € IN. The joint distribution function
of a random vector X : ) — R" is defined as the mapping Fx : R" — [0,1] such that

Fx(x) £ P(Ax(x)) = P(N[L Ax, (%))

Example 1.7 (Tuple of indicators). Consider a probability space (), F,P), a finite n € IN, and events
Ay,..., A, € F, that define the random vector X £ (]lA],. ..,14,). For any x € R", we can define index
sets Ip(x) = {i € [n]: x; <0} and I;(x) £ {i € [n] : x; € [0,1)}, and write the joint distribution function
for this random vector X as

1, Ip(x) UL(x) =0,
Fx(x) = P(ﬁiell(x)A?), Io(x) = @,I] (x) 7é @,
0, Io(x) 75 @.

Definition 1.8. For a random vector X : () — R" defined on the probability space (QQ,F,P) and i € [n], the

distribution of the ith random variable X; £ 71,0 X: QO — R is called the ith marginal distribution, and
denoted by Fx, : 0 — [0,1].

Example 1.9 (Tuple of indicators). Consider a probability space (), F,P), a finite n € IN, and events
Ay,..., A, € F, that define the random vector X £ (1 Ay L4, ). The ith marginal distribution is given
by

Fx; (x) = (1= P(A))Ljo,1) (%) + Ljg,00) ().

Corollary 1.10 (Marginal distribution). Consider a random vector X : Q3 — IR" defined on a probability space
(Q), F, P) with the joint distribution Fx : R" — [0,1]. The ith marginal distribution and can be obtained from the
joint distribution of X as
Fx.(x;) = li Fx(x).
x (i) xﬁoo,%?azzj;ei x(x

Proof. For any i € [n] and x; € R, we have Xl.’l(—oo,xi] = Ax(x) for x = (co,...,x;,...,00) from (). O

Lemma 1.11 (Properties of the joint distribution function). Consider a random vector X : Q3 — R" defined
on the probability space (), F,P). The associated joint distribution function Fx : R"™ — [0,1] satisfies the following
properties.

(i) For x,y € R" such that x; < y; for each i € [n], we have Fx(x) < Fx(y).
(ii) The function Fx(x) is right continuous at all points x € R™.
(iii) The lower limit is limy,—, o Fx(x) = 0, and the upper limit is lim, _,, ;e[ Fx(x) = 1.
Proof. Consider a random vector X : ) — R”" defined on the probability space (Q2,,P) and any x € R".

(i) We can verify that Ax(x) = N Ax, (x;) €N Ax, (yi) = A(y). The result follows from the mono-
tonicity of probability measure.

(if) The proof is similar to the proof for single random variable.

(iii) The event Ax(x) =@ when x; = —co for some i € [n] and Ax(x) = Q when x; = oo for all i € [1], hence
the result follow.
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Example 1.12 (Probability of rectangular events). Consider a probability space ((), F, P) and a random
vector X : ) — R2. Consider the points x < y € R? and the events

Bi2{n <Xi <y} =Ax,(11) \ Ax, (1) €F, B2 {2 <X2<y2} = Ax,(y2) \ Axy(12) €.
The marginal probabilities are given by
P(By) = P(Ax, (1)) — P(Ax, (x1)) = Fx, (y1) — Fx, (x1),
P(By) = P(Ax, (y2)) — P(Ax, (x2)) = Fx, (y2) — Fx, (x2).

Writing x = (x1,x2) and y = (y1,y2), we observe that the end points of the rectangular event B; N B, are
points x, (y1,x2),y, (x1,y2). Therefore, we can write this event as

B1NBy = (Ax(y) \ Ax(x1,¥2)) \ (Ax(y1,%2) \ Ax(x)) € F.

Hence, we can write the probability of this rectangular event as

P(B1 N By) = (Fx(y) — Fx(x1,¥2)) — (Fx(y1,%2) — Fx(x)).

1.2 Event space generated by random vectors

Definition 1.13. Consider a probability space (€),F,P) and a finite n € IN. The event space generated by a
random vector X : ) — R" is the smallest o-algebra generated by the collection of events (Ax(x) : x € R")

and denoted by o(X) £ c(Ax(x) : x € R").

Theorem 1.14. Consider a probability space (Q),F,P), a finite n € N, a random vector X : O — R", and its projec-
tions X; = m; 0 X for all i € [n]. Then, o(X) = o(Xq,..., Xn).

Proof. Recall that 0(X) is generated by the family (Ax(x): x € R") and (X3, ...,X,) is generated by the
family (Ax,(x;) : x; € R,i € [n]). We first show that Ax, (x;) = Ax(x) for x = (o0,...,x,...,00), and hence
0(Xy,...,Xn) Co(X). We then show that Ax(x) = N’ ; Ax,(x;), and hence 0(X) C o (X, ..., Xy). O

Example 1.15 (Tuple of indicators). Consider a probability space (Q,F,P), a finite n € IN, and events
Ay,..., A, € F, that define the random vector X £ (Lay,---,14,). Theo(X) =0(A;:i € [n]).

1.3 Independence of random variables

Definition 1.16. A family of collections of events (A; C F:i € I) is called independent, if for any finite set
FCland A; € A; foralli € F, we have

P(NierAi) = [P(A).
icF
Definition 1.17 (Independent and identically distributed). A random vector X : (3 — R” defined on the
probability space (Q),F, P) is called independent if

n
Fx(x) =] [ Fx,(x;), forall x € R".
i=1

The random vector X is called identically distributed if each of its components have the identical marginal
distribution, i.e.
Fx, = Fx,, foralli € [n].



Remark 2. Independence of a random vector implies that events (Ax,(x;) : i € [1]) are independent for any
x € R". Defining families A; £ (Ax,(x) : x € R) for all i € [n], we observe that the families (Aj,...,A,) are
mutually independent.

Remark 3. In general, if two collection of events are mutually independent, then the event space generated
by them are independent. This can be proved using Dynkin’s 7t-A Theorem.

Theorem 1.18. For an independent random vector X : QO — IR" defined on a probability space (Q,F,P), the event
spaces generated by its components (o(X;) : i € [n]) are independent.

Proof. For an we define a family of events A; £ (X; '(—oo,x] : x € R) for each i € [n]. From the definition
of independence of random vectors, the families (A; C & :i € [n]) are mutually independent. Since 0(A;) =
o(X;), the result follows from the previous remark. O

Definition 1.19 (Independent random vectors). To random vectors X,Y : (3 — R" defined on the same
probability space (Q2, F, P) are independent, if the collection of events (Ax(x) :x € R") and (Ay(y) :y € R")
are independent, where Ax(x) £ N X; }(—oo,x;] and Ay (y) £ N, Y (—o0,y,].

Example 1.20 (Independent random vectors). Consider a set of vectors X = {(0,0,1),(1,0,0)} C R
Consider two independent coin tosses, such that O = {H,T}?,F =22 and P(w) = pk2(«) (1 — p)2-ka(w),
where ky(w) =7, 1 {wi=H}- We define random vectors

X =(0,0,1) L, 1} + (1,0,0) L1y, 1y, Y = (0,0,1) L1,y + (1,0,0)L1p—1y-

We can verify that X,Y : Q — R3 are mutually independent random vectors, though we can also check
that X1, X3 are dependent random variables and so are Y7, Y3.

1.4 Discrete random vectors

Definition 1.21 (Discrete random vectors). If a random vector X : Q) — X7 x --- x X;; C R" takes countable
values in R”, then it is called a discrete random vector. That is, the range of random vector X is countable,
and the random vector is completely specified by the probability mass function

Px(x) =P(N' 1 {X;j=x;}) forall x € X1 X --- x Xj.

Remark 4. For an independent discrete random vector X : () — R", we have Px(x) = [T/_; Px, (x;) for each
x € R"

Example 1.22 (Multiple coin tosses). For a probability space (Q),F,P), such that O = {H,T}",F =
29, P(w) = 5 forall w € Q.
Consider the random vector X : O — R such that X;(w) = 1y, —p for each i € [n]. Observe that X
is a bijection from the sample space to the set {0,1}". In particular, X is a discrete random variable.
For any x € [0,1]", we can write N(x) = YJI'; 1{g1)(x;). Further, we can write the joint distribution
as

1, x; > 1foralli€ [n],
Fx(x) =4 s, *i €[0,1] foralli € [n],
0, x; < 0 for some i € [n].

We can derive the marginal distribution for i-th component as

1, x2>1,
Fx,(x) =43, x€[01),
0, x;<0.



Therefore, it follows that X is an i.i.d. vector.

1.5 Continuous random vectors

Definition 1.23 (Joint density function). For jointly continuous random vector X : (3 — R" with joint
distribution function Fx : R" — [0,1], there exists a joint density function fx : R” — [0,00) such that

fx(x) = 7dx1‘flfdxn Fx(x),and

Fx(x) :A “ dul"‘/u “ dunfx(ul,...,un).
141 nxXn

Remark 5. For an independent continuous random vector X : ) — R", we have fx(x) = TiL; fx,(x;) for all
x € R"

Example 1.24 (Gaussian random vectors). For a probability space (Q),F, P), Gaussian random vector
is a continuous random vector X : (3 — R" defined by its density function

1 1 - n
fx(x) = Wexp (—z(x—y)TZ 1(x—y)> for all x € R",

where the mean vector # € R" and the positive definite covariance matrix £ € R"*". The components of
the Gaussian random vector are Gaussian random variables, which are independent when X is diagonal
matrix and are identically distributed when ¥ = 1.
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