
Lecture-05: Random Vectors

1 Random vectors

Definition 1.1 (Projection). For a vector x ∈Rn, we can define πi : Rn→R is the projection of an n-length
vector onto its i-th component, such that πi(x) = xi.

Definition 1.2. The Borel sigma algebra over space Rn is defined as the smallest sigma algebra generated
by the family (π−1

i (Bx) : x ∈ R, i ∈ [n]) and is denoted by B(Rn). The elements of the Borel sigma algebra
are called Borel sets.

Remark 1. For a subset A ⊆R and projection πi : Rn→R, we can write

π−1
i (A) = {x ∈Rn : xi ∈ A} = R× . . . A · · · ×R.

It follows that the function πi : Rn→R is a Borel measurable function.

Definition 1.3 (Random vectors). Consider a probability space (Ω,F, P) and a finite n ∈N. A random
vector X : Ω→Rn is a mapping from the sample space to an n-length real-valued vector, such that for any
x ∈Rn, the event

AX(x), {ω ∈Ω : X1(ω)6 x1, . . . , Xn(ω)6 xn} = ∩n
i=1X−1

i (−∞, xi] ∈ F.

We say that the random vector X is F-measurable.

Example 1.4 (Tuple of indicators). Consider a probability space (Ω,F, P), a finite n ∈N, and events
A1, . . . , An ∈ F. We define a mapping X : Ω→ {0,1}n by Xi(ω) , 1Ai (ω) for all outcomes ω ∈ Ω. Let
x ∈Rn, then we can write AX(x) = ∩n

i=11
−1
Ai
(−∞, xi]. Recall that

1
−1
Ai
(−∞, xi] =


Ω, xi > 1,
Ac

i , xi ∈ [0,1),
∅, xi < 0.

It follows that the inverse image AX(x) lies in F, and hence X is an F-measurable random vector.

Theorem 1.5. Consider a probability space (Ω,F, P), and a finite n ∈N. A mapping X : Ω→ Rn is a random
vector if and only if Xi , πi ◦ X : Ω→R random variables for all i ∈ [n].

Proof. We will first show that X : Ω→ Rn implies that πi ◦ X is a random variable for any i ∈ [n]. For any
i ∈ [n] and xi ∈R, we take x = (∞, . . . , xi, . . . ,∞). This implies that B , π−1

i (−∞, xi] = R× . . . (−∞, xi] · · · ×
R∈B(Rn). Further, defining AXi (xi), X−1

i (−∞, xi], we observe from the definition of random vectors that

AXi (xi) = X−1 ◦ π−1
i (−∞, xi] = X−1(B) = AX(x) ∈ F. (1)

We will next show that if Xi : Ω→R is a random variable for all i ∈ [n], then X , (X1, . . . , Xn) : Ω→Rn

is a random vector. For any x ∈ Rn, we have AXi (xi) = X−1
i (−∞, xi] ∈ F for all i ∈ [n], from the definition

of random variables. From the closure of event set under countable intersections, we have

AX(x) = ∩n
i=1 AXi (xi) ∈ F. (2)
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1.1 Distribution of random vectors

Definition 1.6. Consider a probability space (Ω,F, P) and a finite n ∈N. The joint distribution function
of a random vector X : Ω→Rn is defined as the mapping FX : Rn→ [0,1] such that

FX(x), P(AX(x)) = P(∩n
i=1 AXi (xi)).

Example 1.7 (Tuple of indicators). Consider a probability space (Ω,F, P), a finite n ∈N, and events
A1, . . . , An ∈ F, that define the random vector X , (1A1 , . . . ,1An). For any x ∈ Rn, we can define index
sets I0(x) , {i ∈ [n] : xi < 0} and I1(x) , {i ∈ [n] : xi ∈ [0,1)}, and write the joint distribution function
for this random vector X as

FX(x) =


1, I0(x) ∪ I1(x) = ∅,
P(∩i∈I1(x)Ac

i ), I0(x) = ∅, I1(x) 6= ∅,
0, I0(x) 6= ∅.

Definition 1.8. For a random vector X : Ω→ Rn defined on the probability space (Ω,F, P) and i ∈ [n], the
distribution of the ith random variable Xi , πi ◦ X : Ω→ R is called the ith marginal distribution, and
denoted by FXi : Ω→ [0,1].

Example 1.9 (Tuple of indicators). Consider a probability space (Ω,F, P), a finite n ∈N, and events
A1, . . . , An ∈ F, that define the random vector X , (1A1 , . . . ,1An). The ith marginal distribution is given
by

FXi (x) = (1− P(A))1[0,1)(x) + 1[1,∞)(x).

Corollary 1.10 (Marginal distribution). Consider a random vector X : Ω→ Rn defined on a probability space
(Ω,F, P) with the joint distribution FX : Rn→ [0,1]. The ith marginal distribution and can be obtained from the
joint distribution of X as

FXi (xi) = lim
xj→∞, for all j 6=i

FX(x).

Proof. For any i ∈ [n] and xi ∈R, we have X−1
i (−∞, xi] = AX(x) for x = (∞, . . . , xi, . . . ,∞) from (1).

Lemma 1.11 (Properties of the joint distribution function). Consider a random vector X : Ω→ Rn defined
on the probability space (Ω,F, P). The associated joint distribution function FX : Rn → [0,1] satisfies the following
properties.

(i) For x,y ∈Rn such that xi 6 yi for each i ∈ [n], we have FX(x)6 FX(y).

(ii) The function FX(x) is right continuous at all points x ∈Rn.

(iii) The lower limit is limxi→−∞ FX(x) = 0, and the upper limit is limxi→∞,i∈[n] FX(x) = 1.

Proof. Consider a random vector X : Ω→Rn defined on the probability space (Ω,F, P) and any x ∈Rn.

(i) We can verify that AX(x) = ∩n
i=1 AXi (xi) ⊆ ∩n

i=1 AXi (yi) = A(y). The result follows from the mono-
tonicity of probability measure.

(ii) The proof is similar to the proof for single random variable.

(iii) The event AX(x) = ∅ when xi =−∞ for some i ∈ [n] and AX(x) = Ω when xi = ∞ for all i ∈ [n], hence
the result follow.
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Example 1.12 (Probability of rectangular events). Consider a probability space (Ω,F, P) and a random
vector X : Ω→R2. Consider the points x 6 y ∈R2 and the events

B1 , {x1 < X1 6 y1} = AX1(y1) \ AX1(x1) ∈ F, B2 , {x2 < X2 6 y2} = AX2(y2) \ AX2(x2) ∈ F.

The marginal probabilities are given by

P(B1) = P(AX1(y1))− P(AX1(x1)) = FX1(y1)− FX1(x1),
P(B2) = P(AX2(y2))− P(AX2(x2)) = FX2(y2)− FX2(x2).

Writing x = (x1, x2) and y = (y1,y2), we observe that the end points of the rectangular event B1 ∩ B2 are
points x, (y1, x2),y, (x1,y2). Therefore, we can write this event as

B1 ∩ B2 = (AX(y) \ AX(x1,y2)) \ (AX(y1, x2) \ AX(x)) ∈ F.

Hence, we can write the probability of this rectangular event as

P(B1 ∩ B2) = (FX(y)− FX(x1,y2))− (FX(y1, x2)− FX(x)).

1.2 Event space generated by random vectors

Definition 1.13. Consider a probability space (Ω,F, P) and a finite n ∈N. The event space generated by a
random vector X : Ω→Rn is the smallest σ-algebra generated by the collection of events (AX(x) : x ∈Rn)

and denoted by σ(X), σ(AX(x) : x ∈Rn).

Theorem 1.14. Consider a probability space (Ω,F, P), a finite n ∈N, a random vector X : Ω→Rn, and its projec-
tions Xi , πi ◦ X for all i ∈ [n]. Then, σ(X) = σ(X1, . . . , Xn).

Proof. Recall that σ(X) is generated by the family (AX(x) : x ∈ Rn) and σ(X1, . . . , Xn) is generated by the
family (AXi (xi) : xi ∈ R, i ∈ [n]). We first show that AXi (xi) = AX(x) for x = (∞, . . . , xi, . . . ,∞), and hence
σ(X1, . . . , Xn) ⊆ σ(X). We then show that AX(x) = ∩n

i=1 AXi (xi), and hence σ(X) ⊆ σ(X1, . . . , Xn).

Example 1.15 (Tuple of indicators). Consider a probability space (Ω,F, P), a finite n ∈N, and events
A1, . . . , An ∈ F, that define the random vector X , (1A1 , . . . ,1An). The σ(X) = σ(Ai : i ∈ [n]).

1.3 Independence of random variables

Definition 1.16. A family of collections of events (Ai ⊆ F : i ∈ I) is called independent, if for any finite set
F ⊆ I and Ai ∈ Ai for all i ∈ F, we have

P(∩i∈F Ai) = ∏
i∈F

P(Ai).

Definition 1.17 (Independent and identically distributed). A random vector X : Ω→ Rn defined on the
probability space (Ω,F, P) is called independent if

FX(x) =
n

∏
i=1

FXi (xi), for all x ∈Rn.

The random vector X is called identically distributed if each of its components have the identical marginal
distribution, i.e.

FXi = FX1 , for all i ∈ [n].
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Remark 2. Independence of a random vector implies that events (AXi (xi) : i ∈ [n]) are independent for any
x ∈ Rn. Defining families Ai , (AXi (x) : x ∈ R) for all i ∈ [n], we observe that the families (A1, . . . ,An) are
mutually independent.
Remark 3. In general, if two collection of events are mutually independent, then the event space generated
by them are independent. This can be proved using Dynkin’s π-λ Theorem.

Theorem 1.18. For an independent random vector X : Ω→ Rn defined on a probability space (Ω,F, P), the event
spaces generated by its components (σ(Xi) : i ∈ [n]) are independent.

Proof. For an we define a family of events Ai , (X−1
i (−∞, x] : x ∈ R) for each i ∈ [n]. From the definition

of independence of random vectors, the families (Ai ⊆ F : i ∈ [n]) are mutually independent. Since σ(Ai) =
σ(Xi), the result follows from the previous remark.

Definition 1.19 (Independent random vectors). To random vectors X,Y : Ω→ Rn defined on the same
probability space (Ω,F, P) are independent, if the collection of events (AX(x) : x ∈Rn) and (AY(y) : y ∈Rn)

are independent, where AX(x), ∩n
i=1X−1

i (−∞, xi] and AY(y), ∩n
i=1Y−1

i (−∞,yi].

Example 1.20 (Independent random vectors). Consider a set of vectors X = {(0,0,1), (1,0,0)} ⊆ R3.
Consider two independent coin tosses, such that Ω = {H, T}2 ,F= 2Ω and P(ω) = pk2(ω)(1− p)2−k2(ω),
where k2(ω) = ∑2

i=11{ωi=H}. We define random vectors

X = (0,0,1)1{ω1=H} + (1,0,0)1{ω1=T}, Y = (0,0,1)1{ω2=H} + (1,0,0)1{ω2=T}.

We can verify that X,Y : Ω→R3 are mutually independent random vectors, though we can also check
that X1, X3 are dependent random variables and so are Y1,Y3.

1.4 Discrete random vectors

Definition 1.21 (Discrete random vectors). If a random vector X : Ω→ X1× · · · ×Xn ⊆Rn takes countable
values in Rn, then it is called a discrete random vector. That is, the range of random vector X is countable,
and the random vector is completely specified by the probability mass function

PX(x) = P(∩n
i=1 {Xi = xi}) for all x ∈ X1 × · · · ×Xn.

Remark 4. For an independent discrete random vector X : Ω→ Rn, we have PX(x) = ∏n
i=1 PXi (xi) for each

x ∈Rn.

Example 1.22 (Multiple coin tosses). For a probability space (Ω,F, P), such that Ω = {H, T}n ,F =

2Ω, P(ω) = 1
2n for all ω ∈Ω.

Consider the random vector X : Ω→R such that Xi(ω) = 1{ωi=H} for each i ∈ [n]. Observe that X
is a bijection from the sample space to the set {0,1}n. In particular, X is a discrete random variable.

For any x ∈ [0,1]n, we can write N(x) = ∑n
i=11[0,1)(xi). Further, we can write the joint distribution

as

FX(x) =


1, xi > 1 for all i ∈ [n],

1
2N(x) , xi ∈ [0,1] for all i ∈ [n],
0, xi < 0 for some i ∈ [n].

We can derive the marginal distribution for i-th component as

FXi (xi) =


1, xi > 1,
1
2 , xi ∈ [0,1),
0, xi < 0.
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Therefore, it follows that X is an i.i.d. vector.

1.5 Continuous random vectors

Definition 1.23 (Joint density function). For jointly continuous random vector X : Ω → Rn with joint
distribution function FX : Rn → [0,1], there exists a joint density function fX : Rn → [0,∞) such that
fX(x) = dn

dx1 ...dxn
FX(x), and

FX(x) =
∫

u16x1

du1· · ·
∫

un6xn
dun fX(u1, . . . ,un).

Remark 5. For an independent continuous random vector X : Ω→Rn, we have fX(x) = ∏n
i=1 fXi (xi) for all

x ∈Rn.

Example 1.24 (Gaussian random vectors). For a probability space (Ω,F, P), Gaussian random vector
is a continuous random vector X : Ω→Rn defined by its density function

fX(x) =
1√

(2π)n det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
for all x ∈Rn,

where the mean vector µ∈Rn and the positive definite covariance matrix Σ∈Rn×n. The components of
the Gaussian random vector are Gaussian random variables, which are independent when Σ is diagonal
matrix and are identically distributed when Σ = σ2 I.
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