
Lecture-09: Moments and Lp spaces

1 Moments

Let X : Ω → R be a random variable defined on the probability space (Ω,F, P) with the distribution function
FX : R → [0,1].

Example 1.1 (Absolute value function). For the function |·| : R → R+, we can write the inverse image
of half open sets (−∞, x] for any x ∈ R as Ag(x) = g−1(−∞, x]. It follows that Ag(x) = ∅ ∈ B(R) for
x < 0 and Ag(x) = [−x, x] ∈ B(R) for x ∈ R+. Since g−1(−∞, x] ∈ B(R), it follows that |·| : R → R+ is
a Borel measurable function.

Lemma 1.2. If E |X| is finite, then EX exists and is finite.

Proof. The function |·| : R → R is a Borel measurable function and hence |X| is a random variable. Further
|X| ⩾ 0, and hence the expectation E |X| always exists. If E |X| is finite, it means EX+ and EX− are both
finite, and hence EX = EX+ − EX− is finite as well.

Corollary 1.3. Let g : R → R be a Borel measurable function. If E |g(X)| is finite, then Eg(X) exists and is finite.

Exercise 1.4 (Polynomial function). For any k ∈N, we define functions gk : R→R such that gk : x 7→ xk.
Show that gk is Borel measurable for all k ∈ N.

Definition 1.5 (Moments). We define the kth moment of the random variable X as mk ≜ Egk(X) = EXk.
First moment EX is called the mean of the random variable.

Remark 1. If E |X|k is finite, then mk exists and is finite.

Remark 2. If P{|X|⩽ 1}= 1, then P
{
|X|k ⩽ 1

}
= 1. Therefore, by the monotonicity of expectations E |X|k ⩽

1, and the moments mk exist and are finite for all k ∈ N.

2 Lp spaces

Remark 3. It is easy to verify the associativity and commutativity of addition of random variables. Further,
constant function 0 is a random variable, and −X is the additive inverse of any random variable X. It is
also easy to verify the compatibility of scalar multiplication with random variables, existence of unit scalar,
and distributivity of scalar multiplications wits respect to field addition and addition of random variables.
It follows that the set of random variables is a vector space over reals, and we denote it by V.

Definition 2.1. For a probability space (Ω,F, P), and p ⩾ 1, we define the set of random variables with finite
absolute pth moment as the vector space

Lp ≜
{

X ∈ V : (E |X|p)1/p < ∞
}

.
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Definition 2.2. We define a function ∥∥p : Lp → R+ defined by ∥∥p (X) = ∥X∥p ≜ (E |X|p)1/p for any X ∈ Lp

and real p ⩾ 1.

Definition 2.3. Given a vector space V of random variables, a norm on the vector space is a map f : V → R+

such that

homogeneity: f (aX) = |a| f (X) for all a ∈ R and X ∈ V,

sub-additivity: f (X + Y)⩽ f (X) + f (Y) for all X,Y ∈ V, and

point-separating: f (X)⩾ 0 for all X ∈ V.

Remark 4. For p = 1, the map ∥∥p is norm. Therefore L1 is a normed vector space consisting of random
variables with bounded absolute mean.
Remark 5. We will show that ∥X∥∞ = sup{|X(ω)| : ω ∈ Ω}, and hence L∞ is a normed vector space of
bounded random variables.
Remark 6. We will also show that ∥∥p is a norm for all p ∈ (1,∞), and hence Lp is a normed vector space
of random variables with bounded ∥∥p norm. In particular, the L2 space consists of random variables with
bounded second moment.
Remark 7. If E |X|N is finite for some N ∈ N, then E |X|k is finite for all k ∈ [N]. This follows from the
linearity and monotonicity of expectations, and the fact that

|X|k = |X|k1{|X|⩽1} + |X|k1{|X|>1} ⩽ 1 + |X|N .

This implies that LN ⊆ Lk for all k ∈ [N]. We will show that Lq ⊆ Lp for any real numbers 1 ⩽ p ⩽ q.

3 Central Moments

Example 3.1 (Shifted polynomial functions). For any k ∈ N, we define functions hk : R → R such that
hk : x 7→ (x − m1)

k. Then, hk = gk(x − m1) = gk ◦ f where f : R → R is defined as f (x) = x − m1 for all
x ∈ R. Since gk and f are measurable, so is hk.

Definition 3.2 (Central moments). Let X : Ω → R be a random variable defined on the probability space
(Ω,F, P) with finite first moment m1. We define the kth central moment of the random variable X as
σk ≜ Ehk(X) = E(X − m1)

k. The second central moment σ2 = E(X − m1)
2 is called the variance of the

random variable and denoted by σ2.

Lemma 3.3. The first central moment σ1 = E(X − m1) = 0 and the variance σ2 = E(X − m1)
2 for a random

variable X is always non-negative, with equality when X is a constant. That is, m2 ⩾ m2
1 with equality when X is a

constant.

Proof. Recall that h1, h2 are Boreal measurable functions, and hence h1(X) = X − m1 and h2(X) = (X − m1)
2

are random variables. From the linearity of expectations, it follows that σ1 = Eh1(X) = EX − m1 = 0. Since
(X − m1)

2 ⩾ 0 almost surely, it follows from the monotonicity of expectation that 0 ⩽ E(X − m1)
2. From the

linearity of expectation and expansion of (X − m1)
2, we get σ2 = EX2 − 2m1EX + m2

1 = m2 − m2
1 ⩾ 0.

Remark 8. If second moment is finite, then the first moment is finite. That is, L2 ⊆ L1.

4 Inequalities

Theorem 4.1 (Markov’s inequality). Let X : Ω → R be a random variable defined on the probability space
(Ω,F, P). Then, for any monotonically non-decreasing function f : R → R+, we have

P{X ⩾ ϵ}⩽ E[ f (X)]

f (ϵ)
.
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Proof. We can verify that any monotonically non-decreasing function f : R → R+ is Borel measurable.
Hence, f (X) is a random variable for any random variable X. Therefore,

f (X) = f (X)1{X⩾ϵ} + f (X)1{X<ϵ} ⩾ f (ϵ)1{X⩾ϵ}.

The result follows from the monotonicity of expectations.

Corollary 4.2 (Markov). Let X be a non-negative random variable, then P{X ⩾ ϵ}⩽ EX
ϵ for all ϵ > 0.

Corollary 4.3 (Chebychev). Let X be a random variable with finite mean m1 and variance σ2, then

P{|X − m1|⩾ ϵ}⩽ σ2

ϵ2 , for all ϵ > 0.

Proof. Apply the Markov’s inequality for random variable Y = |X − µ|⩾ 0 and increasing function f (x) =
x2 for x ⩾ 0.

Corollary 4.4 (Chernoff). Let X be a random variable with finite E[eθX ] for some θ > 0, then

P{X ⩾ ϵ}⩽ e−θϵE[eθX ], for all ϵ > 0.

Proof. Apply the Markov’s inequality for random variable X and increasing function f (x) = eθx > 0 for
θ > 0.

Definition 4.5 (Convex function). A real-valued function f : R → R is convex if for all x,y ∈ R and θ ∈ [0,1],
we have

f (θx + (1 − θ)y)⩽ θ f (x) + (1 − θ) f (y).

Theorem 4.6 (Jensen’s inequality). For any convex function f : R → R and random variable X, we have

f (EX)⩽ E f (X).

Proof. It suffices to show this for simple random variables X : Ω → X. We show this by induction on cardi-
nality of alphabet X. The inequality is trivially true for |X| = 1. We assume that the inductive hypothesis is
true for |X| = n.

Let X ∈ X, where |X| = n + 1. We can denote X = {x1, . . . , xn+1} with pi ≜ P{X = xi} for all i ∈ [n + 1].
We observe that (

pj
1−p1

: j⩾ 2) is a probability mass function for some random variable Y ∈ Y= {x2, . . . , xn+1}
with cardinality n. Hence, by inductive hypothesis, we have

f

(
n+1

∑
i=2

pi
1 − p1

xi

)
= f (EY)⩽ E f (Y) =

n+1

∑
i=2

pi
1 − p1

f (xi).

Applying the convexity of f to θ = p1, x = x1,y = ∑n+1
i=2

pi
1−p1

xi, we get

f (EX) = f (
n+1

∑
i=1

pixi) = f
(

p1x1 + (1 − p1)
n+1

∑
i=2

pi
1 − p1

xi

)
⩽ p1 f (x1) + (1 − p1) f

( n+1

∑
i=2

pi
1 − p1

xi

)
.

From the inductive step, it follows that the RHS is upper bounded by E f (X), and the result follows.

Theorem 4.7. For any real numbers 1 ⩽ p ⩽ q < ∞, we have Lq ⊆ Lp.

Proof. Let 1 ⩽ p ⩽ q < ∞ and consider a convex function g : R+ → R+ defined by g(x)≜ xq/p for all x ∈ R+.
It follows that g(|X|p) = |X|q and hence from the Jensen’s inequality, we get

∥X∥q
p = g(E |X|p)⩽ Eg(|X|p) = ∥X∥q

q .
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