Lecture-09: Moments and L? spaces

1 Moments

Let X : Q) — R be a random variable defined on the probability space (), F, P) with the distribution function
Fx:R —[0,1].

Example 1.1 (Absolute value function). For the function |-| : R — R, we can write the inverse image
of half open sets (—oo,x] for any x € R as Ag(x) = g~ !(—o0,x]. It follows that A¢(x) = @ € B(R) for
x <0and Ag(x) = [-x,x] € B(R) for x € Ry. Since g~ !(—o0,x] € B(R), it follows that || : R — Ry is
a Borel measurable function.

Lemma 1.2. IfE|X]| is finite, then EX exists and is finite.

Proof. The function |-| : R — R is a Borel measurable function and hence | X| is a random variable. Further
|X| > 0, and hence the expectation E|X| always exists. If IE|X] is finite, it means EX and EX_ are both
finite, and hence EX = EX; — EX_ is finite as well. O

Corollary 1.3. Let g : R — R be a Borel measurable function. If E |g(X)| is finite, then Eg(X) exists and is finite.

Exercise 1.4 (Polynomial function). For any k € IN, we define functions gj : R — R such that g : x > x*.

Show that g is Borel measurable for all k € IN.

Definition 1.5 (Moments). We define the kth moment of the random variable X as m; = Eg(X) = EX*.
First moment [EX is called the mean of the random variable.

Remark 1. If E|X |k is finite, then my exists and is finite.

Remark2. If P{|X| <1} =1, then P { 1x|* < 1} = 1. Therefore, by the monotonicity of expectations E | X|* <
1, and the moments m; exist and are finite for all k € IN.

2 LP spaces

Remark 3. It is easy to verify the associativity and commutativity of addition of random variables. Further,
constant function 0 is a random variable, and —X is the additive inverse of any random variable X. It is
also easy to verify the compatibility of scalar multiplication with random variables, existence of unit scalar,
and distributivity of scalar multiplications wits respect to field addition and addition of random variables.
It follows that the set of random variables is a vector space over reals, and we denote it by V.

Definition 2.1. For a probability space ((0,F, P), and p > 1, we define the set of random variables with finite
absolute pth moment as the vector space

Lra {Xe Vi (E|X[P)VP <oo}.



Definition 2.2. We define a function |||, : LP — Ry defined by |[||,, (X) = [|X]|,, £ (E|X|")/? forany X € LP
and real p > 1.

Definition 2.3. Given a vector space V of random variables, a norm on the vector spaceisamap f: V — R
such that

homogeneity: f(aX)=|a|f(X) forallae Rand X €V,

sub-additivity: f(X+Y) < f(X) + f(Y) forall X,Y € V, and

point-separating: f(X)>0forall X € V.

Remark 4. For p =1, the map ||| p 1s norm. Therefore L' is a normed vector space consisting of random

variables with bounded absolute mean.

Remark 5. We will show that ||X||, = sup{|X(w)|:w € Q}, and hence L* is a normed vector space of
bounded random variables.

Remark 6. We will also show that |||, is a norm for all p € (1,00), and hence L? is a normed vector space
of random variables with bounded || Hp norm. In particular, the L? space consists of random variables with
bounded second moment.

Remark 7. 1f E | X[V is finite for some N € N, then E|X |k is finite for all k € [N]. This follows from the
linearity and monotonicity of expectations, and the fact that

k k k N
X" = [XI"1xj<y + X[ Lyxps1y < T4 X

This implies that LN C L for all k € [N]. We will show that L9 C L? for any real numbers 1 < p < g.

3 Central Moments

Example 3.1 (Shifted polynomial functions). For any k € IN, we define functions /; : R — R such that
i s x = (x — myp)X. Then, by = gx(x — my) = g o f where f: R — R is defined as f(x) = x — m; for all
x € R. Since gx and f are measurable, so is .

Definition 3.2 (Central moments). Let X : ) — R be a random variable defined on the probability space
(Q),F,P) with finite first moment m;. We define the kth central moment of the random variable X as
0r 2 Eh(X) = E(X — my)X. The second central moment 0> = IE(X — my)? is called the variance of the
random variable and denoted by ¢?.

Lemma 3.3. The first central moment o1 = E(X — my) = 0 and the variance o> = E(X — my)? for a random
variable X is always non-negative, with equality when X is a constant. That is, my > m? with equality when X is a
constant.

Proof. Recall that h1, /i, are Boreal measurable functions, and hence h1(X) = X — my and hp(X) = (X — my)?
are random variables. From the linearity of expectations, it follows that o7 = [Eh;(X) = EX — my = 0. Since
(X —m)? > 0 almost surely, it follows from the monotonicity of expectation that 0 < IE(X — 117)2. From the
linearity of expectation and expansion of (X — m)?, we get 02 = EX?> — 2mEX +m% =my —m3 >0. O

Remark 8. If second moment is finite, then the first moment is finite. Thatis, L2 C L!.

4 Inequalities

Theorem 4.1 (Markov’s inequality). Let X : ) — IR be a random variable defined on the probability space
(Q),F,P). Then, for any monotonically non-decreasing function f : R — R, we have

E[f(X)]
P{X>e} < o)



Proof. We can verify that any monotonically non-decreasing function f : R — R is Borel measurable.
Hence, f(X) is a random variable for any random variable X. Therefore,

fX)=f(X)Lxzer + fF(X)Lixcer = f(€) L xze)-
The result follows from the monotonicity of expectations. O
Corollary 4.2 (Markov). Let X be a non-negative random variable, then P{X > e} < % forall e > 0.
Corollary 4.3 (Chebychev). Let X be a random variable with finite mean my and variance 2, then
02
P{X—my| =€} < e—z,foralle > 0.

Proof. Apply the Markov’s inequality for random variable Y = |X — y| > 0 and increasing function f(x) =
xZ for x > 0. O

Corollary 4.4 (Chernoff). Let X be a random variable with finite IE[e?X] for some 8 > 0, then
P{X > e} <e %E[X], forall e > 0.

Proof. Apply the Markov’s inequality for random variable X and increasing function f(x) = ¢* > 0 for
6> 0. O

Definition 4.5 (Convex function). A real-valued function f : R — R is convexif forall x,y € Rand 6 € [0,1],

we have
flOx+(1=0)y) <6f(x)+(1-0)f(y)

Theorem 4.6 (Jensen'’s inequality). For any convex function f : IR — R and random variable X, we have

fEX) <Ef(X).

Proof. It suffices to show this for simple random variables X : (2 — X. We show this by induction on cardi-
nality of alphabet X. The inequality is trivially true for |X| = 1. We assume that the inductive hypothesis is
true for |X| =n.

Let X € X, where |X| = n + 1. We can denote X = {x1,...,x,,1} with p; 2 P{X = x;} foralli € [n +1].
We observe that ( p
with cardinality n. Hence, by inductive hypothesis, we have

(nil pi ) f(IEY ”il Pz

:j > 2) is a probability mass function for some random variable Y € Y = {x2,...,x,41}

Applying the convexity of f to 6 = py,x = x1,y = L1} 12 we get
n+1 n+1 . n+1
= f(Y_ pixi) Zf(Plxl +(1-p) ) 1fil’glxi) <puf(x) +(1—p1) ( Z pl )
i=1 i=2

From the inductive step, it follows that the RHS is upper bounded by Ef(X), and the result follows. O
Theorem 4.7. For any real numbers 1 < p < g < oo, we have L1 C LP.

Proof. Let1< p<q < coand consider a convex function g : Ry — R defined by g(x) £ x7/7 forall x € Ry.
It follows that ¢(|X|”) = | X|7 and hence from the Jensen’s inequality, we get

IX11} = s(E|X|") <Eg(IX|") = [IX]|7.-
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