

Lecture-10: Correlation

1 Correlation

Let $X : \Omega \rightarrow \mathbb{R}$ and $Y : \Omega \rightarrow \mathbb{R}$ be random variables defined on the same probability space (Ω, \mathcal{F}, P) .

Exercise 1.1. Show that the function $g : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $g : (x, y) \mapsto xy$ is a Borel measurable function.

Definition 1.2 (Correlation). For two random variables X, Y defined on the same probability space, the **correlation** between these two random variables is defined as $\mathbb{E}[XY]$. If $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$, then the random variables X, Y are called **uncorrelated**.

Lemma 1.3. *If X, Y are independent random variables, then they are uncorrelated.*

Proof. It suffices to show for X, Y simple and independent random variables. We can write $X = \sum_{x \in \mathcal{X}} x \mathbb{1}_{A_X(x)}$ and $Y = \sum_{y \in \mathcal{Y}} y \mathbb{1}_{A_Y(y)}$. Therefore,

$$\mathbb{E}[XY] = \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} xy P\{A_X(x) \cap A_Y(y)\} = \sum_{x \in \mathcal{X}} x P(A_X(x)) \sum_{y \in \mathcal{Y}} y P(A_Y(y)) = \mathbb{E}[X]\mathbb{E}[Y].$$

□

Proof. If X, Y are independent random variables, then the joint distribution $F_{X,Y}(x, y) = F_X(x)F_Y(y)$ for all $(x, y) \in \mathbb{R}^2$. Therefore,

$$\mathbb{E}[XY] = \int_{(x,y) \in \mathbb{R}^2} xy dF_{X,Y}(x, y) = \int_{x \in \mathbb{R}} x dF_X(x) \int_{y \in \mathbb{R}} y dF_Y(y) = \mathbb{E}[X]\mathbb{E}[Y].$$

□

Example 1.4 (Uncorrelated dependent random variables). Let $X : \Omega \rightarrow \mathbb{R}$ be a continuous random variable with even density function $f_X : \mathbb{R} \rightarrow \mathbb{R}_+$, and $g : \mathbb{R} \rightarrow \mathbb{R}_+$ be another even function that is increasing for $y \in \mathbb{R}_+$. Then g is Borel measurable function and $Y = g(X)$ is a random variable. Further, we can verify that X, Y are uncorrelated and dependent random variables.

To show dependence of X and Y , we take positive x, y such that $F_X(x) < 1$ and $x > x_y$ where $\{x_y\} = g^{-1}(y) \cap \mathbb{R}_+$. Then, we can write the set

$$A_Y(y) = Y^{-1}(-\infty, y] = X^{-1}[-x_y, x_y].$$

Hence, we can write the joint distribution at (x, y) as

$$F_{X,Y}(x, y) = P\{X \leq x, Y \leq y\} = P(A_X(x) \cap A_Y(y)) = P(A_Y(y)) = F_Y(y) \neq F_X(x)F_Y(y).$$

Since X has even density function, we have $f_X(x) = f_X(-x)$ for all $x \in \mathbb{R}$. Therefore, we have

$$\mathbb{E}Xg(X)\mathbb{1}_{\{X<0\}} = \int_{x<0} xg(x)f_X(x)dx = \int_{u>0} (-u)g(-u)f_X(u)du = -\mathbb{E}Xg(-X)\mathbb{1}_{\{X>0\}}.$$

Further, since the function g is even, we have $g(X) = g(-X)$. Therefore, we have

$$\mathbb{E}[Xg(X)] = \mathbb{E}[Xg(X)\mathbb{1}_{\{X>0\}}] - \mathbb{E}[Xg(-X)\mathbb{1}_{\{X>0\}}] = \mathbb{E}[Xg(X)\mathbb{1}_{\{X>0\}}] - \mathbb{E}[Xg(X)\mathbb{1}_{\{X>0\}}] = 0.$$

Theorem 1.5 (AM greater than GM). For any two random variables X, Y , the correlation is upper bounded by the average of the second moments, with equality iff $X = Y$ almost surely. That is,

$$\mathbb{E}[XY] \leq \frac{1}{2}(\mathbb{E}X^2 + \mathbb{E}Y^2).$$

Proof. This follows from the linearity and monotonicity of expectations and the fact that $(X - Y)^2 \geq 0$ with equality iff $X = Y$. \square

Theorem 1.6 (Cauchy-Schwarz inequality). For any two random variables X, Y , the correlation of absolute values of X and Y is upper bounded by the square root of product of second moments, with equality iff $X = \alpha Y$ for any constant $\alpha \in \mathbb{R}$. That is,

$$\mathbb{E}|XY| \leq \sqrt{\mathbb{E}X^2 \mathbb{E}Y^2}.$$

Proof. For two random variables X and Y , we can define normalized random variables $W \triangleq \frac{|X|}{\sqrt{\mathbb{E}X^2}}$ and $Z \triangleq \frac{|Y|}{\sqrt{\mathbb{E}Y^2}}$, to get the result. \square

2 Covariance

Definition 2.1 (Covariance). For two random variables X, Y defined on the same probability space, the **covariance** between these two random variables is defined as $\text{cov}(X, Y) \triangleq \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y)$.

Lemma 2.2. If the random variables X, Y are called uncorrelated, then the covariance is zero.

Proof. We can write the covariance of uncorrelated random variables X, Y as

$$\text{cov}(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y) = \mathbb{E}XY - (\mathbb{E}X)(\mathbb{E}Y) = 0.$$

\square

Lemma 2.3. Let $X : \Omega \rightarrow \mathbb{R}^n$ be an uncorrelated random vector and $a = (a_1, \dots, a_n) \in \mathbb{R}^n$, then

$$\text{Var}\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i^2 \text{Var}(X_i).$$

Proof. From the linearity of expectation, we can write the variance of the linear combination as

$$\mathbb{E}\left(\sum_{i=1}^n a_i (X_i - \mathbb{E}X_i)\right)^2 = \sum_{i=1}^n a_i^2 \text{Var}X_i + \sum_{i \neq j} \text{cov}(X_i, X_j).$$

\square

Definition 2.4 (Correlation coefficient). The ratio of covariance of two random variables X, Y and the square root of product of their variances is called the **correlation coefficient** and denoted by

$$\rho_{X,Y} \triangleq \frac{\text{cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}}.$$

Theorem 2.5 (Correlation coefficient). For any two random variables X, Y , the absolute value of correlation coefficient is less than or equal to unity, with equality iff $X = \alpha Y + \beta$ almost surely for constants $\alpha = \sqrt{\frac{\text{Var}(X)}{\text{Var}(Y)}}$ and $\beta = \mathbb{E}X - \alpha \mathbb{E}Y$.

Proof. For two random variables X and Y , we can define normalized random variables $W \triangleq \frac{X - \mathbb{E}X}{\sqrt{\text{Var}(X)}}$ and $Z \triangleq \frac{Y - \mathbb{E}Y}{\sqrt{\text{Var}(Y)}}$. Applying the AM-GM inequality to random variables W, Z , we get

$$|\text{cov}(X, Y)| \leq \sqrt{\text{Var}(X) \text{Var}(Y)}.$$

Recall that equality is achieved iff $W = Z$ almost surely or equivalently iff $X = \alpha Y + \beta$ almost surely. Taking $U = -Y$, we see that $-\text{cov}(X, Y) \leq \sqrt{\text{Var}(X) \text{Var}(Y)}$, and hence the result follows. \square

3 L^p spaces

Definition 3.1. For $p, q \geq 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, (p, q) is called the **conjugate pair**, and the spaces L^p and L^q are called **dual spaces**.

Example 3.2. The dual of L^1 space is L^∞ . The space L^2 is dual of itself, and called a **Hilbert space**.

Theorem 3.3 (Hölder's inequality). Consider two random variables X, Y such that $\mathbb{E}|X|^p$ and $\mathbb{E}|Y|^q$ are finite for $p, q \geq 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Then,

$$\mathbb{E}|XY| \leq \|X\|_p \|Y\|_q.$$

Proof. Recall that $f(x) = e^x$ is a convex function. Therefore, for random variable $Z \in \{p \ln V, q \ln W\}$ with PMF $(\frac{1}{p}, \frac{1}{q})$, it follows from Jensen's inequality that

$$VW = f(\mathbb{E}Z) \leq \mathbb{E}f(Z) = \frac{V^p}{p} + \frac{W^q}{q}.$$

Taking expectation on both sides, we get from the monotonicity of expectation that $\mathbb{E}VW \leq \frac{\mathbb{E}V^p}{p} + \frac{\mathbb{E}W^q}{q}$.

Taking $V \triangleq \frac{|X|}{(\mathbb{E}|X|^p)^{\frac{1}{p}}}$ and $W \triangleq \frac{|Y|}{(\mathbb{E}|Y|^q)^{\frac{1}{q}}}$, we get the result. \square

Definition 3.4. For a pair of random variables $(X, Y) \in (L^p, L^q)$ for conjugate pair (p, q) , we can define inner product $\langle \cdot, \cdot \rangle : L^p \times L^q \rightarrow \mathbb{R}$ by

$$\langle \cdot, \cdot \rangle \triangleq \langle X, Y \rangle \triangleq \mathbb{E}XY.$$

Remark 1. For $X \in L^p$ and $Y \in L^q$, the expectation $\mathbb{E}|XY|$ is finite from Hölder's inequality. Therefore, the inner product $\langle X, Y \rangle = \mathbb{E}[XY]$ is well defined and finite.

Remark 2. This inner product is well defined for the conjugate pair $(1, \infty)$.

Theorem 3.5 (Minkowski's inequality). For $1 \leq p < \infty$, let $X, Y \in L^p$ be two random variables defined on a probability space (Ω, \mathcal{F}, P) . Then,

$$\|X + Y\|_p \leq \|X\|_p + \|Y\|_p,$$

with inequality iff $X = \alpha Y$ for some $\alpha \geq 0$ or $Y = 0$.

Proof. Since addition is a Borel measurable function, $X + Y$ is a random variable. We first show that $X + Y \in L^p$, when $X, Y \in L^p$. To this end, we observe that $g : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ defined by $g(x) = x^p$ for all $x \in \mathbb{R}_+$, is a convex function for $p \geq 1$. From the convexity of g , we have

$$\left| \frac{1}{2}X + \frac{1}{2}Y \right|^p \leq \left| \frac{1}{2}|X| + \frac{1}{2}|Y| \right|^p = g\left(\frac{1}{2}|X| + \frac{1}{2}|Y|\right) \leq \frac{1}{2}g(|X|) + \frac{1}{2}g(|Y|) = \frac{1}{2}|X|^p + \frac{1}{2}|Y|^p.$$

This implies that $|X + Y|^p \leq 2^{p-1}(|X|^p + |Y|^p)$.

The inequality holds trivially if $\|X + Y\|_p = 0$. Therefore, we assume that $\|X + Y\|_p > 0$, without any loss of generality. Using the definition of $\|\cdot\|_p$, triangle inequality, and linearity of expectation we get

$$\|X + Y\|_p^p = \mathbb{E}[|X + Y||X + Y|^{p-1}] \leq E(|X| + |Y|)|X + Y|^{p-1} = \mathbb{E}|X||X + Y|^{p-1} + \mathbb{E}|Y||X + Y|^{p-1}.$$

From the Hölder's inequality applied to conjugate pair (p, q) to the two products on RHS, we get

$$\|X + Y\|_p^p \leq (\|X\|_p + \|Y\|_p) \left\| |X + Y|^{p-1} \right\|_q$$

Recall that $q = \frac{p}{p-1}$, and hence $(p-1)q = p$. Therefore, $\left\| |X + Y|^{p-1} \right\|_q = (\mathbb{E}|X + Y|^p)^{1-\frac{1}{p}}$ and the result follows. \square

Remark 3. We have shown that the map $\|\cdot\|_p$ is a norm by proving the Minkowski's inequality. Therefore, L^p is a normed vector space. We can define distance between two random variables $X_1, X_2 \in L^p$ by the norm $\|X_1 - X_2\|_p$.