Lecture-10: Correlation

1 Correlation

Let X: Q — Rand Y : Q) — R be random variables defined on the same probability space (), F, P).
Exercise 1.1. Show that the function g : R? — R defined by g : (x,y) + xy is a Borel measurable function.

Definition 1.2 (Correlation). For two random variables X, Y defined on the same probability space, the cor-
relation between these two random variables is defined as E[XY]. If E[XY] = E[X]E[Y], then the random
variables X, Y are called uncorrelated.

Lemma 1.3. If X,Y are independent random variables, then they are uncorrelated.

Proof. It suffices to show for X, Y simple and independent random variables. We can write X =} cxx 1 4, ()
and Y =}, cyyly, (). Therefore,

EXY]= )  ayP{Ax(x)NAy(y)} = ) xP(Ax(x)) }_ yP(Ay(y)) = E[X]E[Y].
(xy)eXxy xeX yeY
L]

Proof. 1f X,Y are independent random variables, then the joint distribution Fx y(x,y) = Fx(x)Fy(y) for all
(x,y) € R?. Therefore,

E[XY] :/

dFxy(xy) = [ xdFx(x) [
cgereY xy(vy)= |  xdFx(x)

ydFy(y) = E[X]E[Y].
yeR

Example 1.4 (Uncorrelated dependent random variables). Let X : () — IR be a continuous random
variable with even density function fx : R —+ R, and g : R — R, be another even function that is
increasing for y € R. Then g is Borel measurable function and Y = g(X) is a random variable. Further,
we can verify that X,Y are uncorrelated and dependent random variables.

To show dependence of X and Y, we take positive x,y such that Fx(x) < 1and x > x, where {x,} =

¢ '(y) NRy. Then, we can write the set
Ay(y) =Y (—oo,y] = X~ =y, xy)-
Hence, we can write the joint distribution at (x,y) as
Fxy(xy) = P{X <xY <y} = P(Ax(x) N Ay (y)) = P(Ay (y)) = Fr(y) # Fx(x)Fy (y)-
Since X has even density function, we have fx(x) = fx(—x) for all x € R. Therefore, we have
EXg(X)Lix<op = | _ w8 fx(@)dx= | (-w)g(=u)fx(w)du = —EXg(=X)1{x50).
Further, since the function g is even, we have g(X) = g(—X). Therefore, we have

E[Xg(X)] = E[Xg(X)1ix>0}] — E[Xg(—X)1ix>01] = E[Xg(X)1ix>0y] — E[Xg(X)1ix>0y] =0.



Theorem 1.5 (AM greater than GM). For any two random variables X, Y, the correlation is upper bounded by the
average of the second moments, with equality iff X =Y almost surely. That is,

1
E[XY] < E(1EX2 + EY?).
Proof. This follows from the linearity and monotonicity of expectations and the fact that (X — Y)? > 0 with
equality iff X =Y. O

Theorem 1.6 (Cauchy-Schwarz inequality). For any two random variables X, Y, the correlation of absolute values
of X and Y is upper bounded by the square root of product of second moments, with equality iff X = aY for any

constant « € R. That is,
E|XY| < VEX2EY?2.

Proof. For two random variables X and Y, we can define normalized random variables W £ 1XI

VEX?2

E \)&, to get the result. O

and

2 Covariance

Definition 2.1 (Covariance). For two random variables X,Y defined on the same probability space, the
covariance between these two random variables is defined as cov(X,Y) £ E(X — EX)(Y — EY).

Lemma 2.2. If the random variables X,Y are called uncorrelated, then the covariance is zero.

Proof. We can write the covariance of uncorrelated random variables X,Y as

cov(X,Y) =E(X — EX)(Y — EY) = EXY — (EX)(EY) =0.

O
Lemma 2.3. Let X : O — R" be an uncorrelated random vector and a = (ay,...,a,) € R", then
n n
Var | Y_a;X; | =Y a?Var (X;).
i=1 i=1
Proof. From the linearity of expectation, we can write the variance of the linear combination as
n 2 n
E(Y ai(X;—EX;) | =Y a7VarX;+ ) cov(X; X))
i=1 i=1 i#
O

Definition 2.4 (Correlation coefficient). The ratio of covariance of two random variables X,Y and the
square root of product of their variances is called the correlation coefficient and denoted by

N cov(X,Y)
PXY = .
Var(X), Var(Y)

Theorem 2.5 (Correlation coefficient). For any two random variables X,Y, the absolute value of correlation co-
efficient is less than or equal to unity, with equality iff X = aY + B almost surely for constants & = \\izig; and
B=EX —«aEY.

Proof. For two random variables X and Y, we can define normalized random variables W = % and

ar

zZs %. Applying the AM-GM inequality to random variables W, Z, we get
|cov(X,Y)| < 4/ Var(X) Var(Y).

Recall that equality is achieved iff W = Z almost surely or equivalently iff X = aY + B almost surely. Taking
U = —Y, we see that —cov(X,Y) < /Var(X) Var(Y), and hence the result follows. O



3 L7 spaces

Definition 3.1. For p,q > 1 with % + % =1, (p,q) is called the conjugate pair, and the spaces L? and L7 are
called dual spaces.

Example 3.2. The dual of L! space is L™. The space L? is dual of itself, and called a Hilbert space.

Theorem 3.3 (Holder’s inequality). Consider two random variables X,Y such that B |X|V and E|Y|7 are finite
for p,q > 1 such that % + % =1. Then,
E XY < [[X], Yl

Proof. Recall that f(x) = e* is a convex function. Therefore, for random variable Z € {pInV,qInW} with
PMF (%, %), it follows from Jensen’s inequality that

vr Wi
VW= f(EZ)<Ef(Z)=—+ —.
p q
Taking expectation on both sides, we get from the monotonicity of expectation that EVIW < ]ETY}? + IETWq.
Taking V £ % and W £ %, we get the result. O
(E|x|F)7 (E[y|")7

Definition 3.4. For a pair of random variables (X,Y) € (L?, L7) for conjugate pair (p,q), we can define inner
product () : LP x L9 — R by

O (X,Y) 2 (X,Y) £ EXY.
Remark 1. For X € L? and Y € LY, the expectation [E | XY is finite from Holder’s inequality. Therefore, the
inner product (X,Y) = E[XY]] is well defined and finite.
Remark 2. This inner product is well defined for the conjugate pair (1,00).
Theorem 3.5 (Minkowski’s inequality). For 1 < p < oo, let X,Y € LF be two random variables defined on a
probability space (Q),F, P). Then,

X+ Y, < [1XIl, + Y1,
with inequality iff X = aY for some « > 0orY =0.
Proof. Since addition is a Borel measurable function, X + Y is a random variable. We first show that X +Y €

L?P, when X,Y € LP. To this end, we observe that g : R, — R, defined by g(x) = x? for all x € Ry, is a
convex function for p > 1. From the convexity of g, we have

1 p
E
This implies that | X + Y|P <2P~1(|X|P +|Y|P).

The inequality holds trivially if [ X + Y||,, = 0. Therefore, we assume that || X + Y{|, > 0, without any
loss of generality. Using the definition of |[|,, triangle inequality, and linearity of expectation we get

1 1 1 b 1 1 1 1 1 1
— < | = _ — o= — < = il — Py P

IX+ YD =E[|X+Y[|X+YP<E([IX] + [Y]) X+ Y[PT =E|X| | X+ Y[" +E[Y||X+ Y[/
From the Holder’s inequality applied to conjugate pair (p,q) to the two products on RHS, we get

-1
1415 < X + Y1) 1+ vt

1
Recall that g = %, and hence (p — 1)g = p. Therefore, |X+Y|p||q = (E|X+Y|")" 7 and the result

follows. 0

Remark 3. We have shown that the map |||, is a norm by proving the Minkowski’s inequality. Therefore, L?

is a normed vector space. We can define distance between two random variables X;,X, € L? by the norm
1X1 = Xa|,-
P
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