Lecture-11: Generating functions

1 Generating functions

Suppose that X : ) — R is a continuous random variable on the probability space (Q, F, P) with distribution
function Fx : R — [0,1].

1.1 Characteristic function

Example 1.1. Let j = \/—1, then we can show that /, : R — C defined by h,(x) £ e/** = cos(ux) +
jsin(ux) is also Borel measurable for all u € R. Thus, h,(X) : QO — C is a complex valued random
variable on this probability space.

Definition 1.2 (Characteristic function). For a random variable X : (3 — R defined on the probability space
(Q,7,P), the characteristic function ®x : R — C is defined by ®x(u) £ Ee/*X forallu € R and j2 = —1.

Remark 1. The characteristic function ®x (u) is always finite, since |®x (u)| = |Ee/"X| < E |e/*X| = 1.
Remark 2. For a discrete random variable X : ) — X with PMF Px : X — [0,1], the characteristic function
Dx (1) = Lyex @ Px(x).

Remark 3. For a continuous random variable X : (2 — R with density function fx : R — R, the characteristic
function ®x (u) = [*_el"X fx(x)dx.
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Example 1.3 (Gaussian random variable). For a Gaussian random variable X : () — R with mean u
and variance o2, the characteristic function ®y is

1 ux — 2 uo?
:\/ﬁ xe]Re e dx:exp(—T—i—]uy).

We observe that |®x(u)| = ¢~"*7*/2 has Gaussian decay with zero mean and variance 1/¢?.

Dy (u)

Theorem 1.4. IfE |X\N is finite for some integer N € IN, then @gf) (u) is finite and continuous functions of u € R
forall k € [N]. Further, CDg?) (0) = jFE[X*] for all k € [N].

Proof. Exchanging derivative and the integration (which can be done since ¢/** is a bounded function with
all derivatives), and evaluating the derivative at u =0, we get

dkeiuX
duk

= FE[XH].

u=0

o (0)=F [

Since E|X|" is finite, then so is E \X|k for all k € [N]. Therefore, IE[X¥] exists and is finite, and Cbg?) (0) =
ik k
FFE[XH). O

Theorem 1.5. Two random variables have the same distribution iff they have the same characteristic function.

Proof. 1t is easy to see the necessity and the sufficiency is difficult. O



1.2 Moment generating function

Example 1.6. A function g; : R — R defined by g;(x) £ ¢/* is monotone and hence Borel measurable
for all t € R. Therefore, g;(X) : O — R is a positive random variable on this probability space.

Characteristic function always exist, however are complex in general. Sometimes it is easier to work with
moment generating functions, when they exist.

Definition 1.7 (Moment generating function). For a random variable X : () — R defined on the probability

space (Q,F,P), the moment generating function My : R — Ry is defined by Mx(t) £ Ee!X for all t € R
where Mx (t) is finite.

Lemma 1.8. For a random variable X, if the MGF Mx (t) is finite for some t € R, then Mx(t) =14+ Y ,,eN ;—H,IE[X”]

Proof. From the Taylor series expansion of e around 8 = 0, we get ¢ =1+ ¥ ,.cn %. Therefore, taking
0 = tX, we can write

41

tX __ n

e 71+§ —n'X.
nelN

Taking expectation on both sides, the result follows from the linearity of expectation, when both sides have
finite expectation.

Example 1.9 (Gaussian random variable). For a Gaussian random variable X : (3 — R with mean y
and variance ¢, the moment generating function My is

Mx(t) =exp (% + ty).

1.3 Probability generating function

For a non-negative integer-valued random variable X : O — X C Z_, it is often more convenient to work
with the z-transform of the PMF, called the probability generating function.

Definition 1.10. For a discrete non-negative integer-valued random variable X : () — X C Z, with proba-
bility mass function Px : X — [0,1], the probability generating function ¥ : C — C is defined by

Yx(z) 2 E[zX] = Y Z*Px(x), z€C,|z[<1.
xeX

Lemma 1.11. For a non-negative simple random variable X : Q0 — X, we have [¥x(z)| <1 forall |z| < 1.

Proof. Let z € C with |z| < 1. Let Px : X — [0,1] be the probability mass function of the non-negative simple
random variable X. Since any realization x € X of random variable X is non-negative, we can write

[¥x(z)| = | }_ z"Px(x)

xeX

< Y |z Px(x) < ) Px(x)=1.

xeX xeX

O

Theorem 1.12. For a non-negative simple random variable X : Q) — X with finite kth moment EXX, the k-th deriva-
tive of probability generating function evaluated at z =1 is the k-th order factorial moment of X. That is,

k

v 1) =E =E[X(X - 1)(X—2)...(X —k+1)].
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Proof. It follows from the interchange of derivative and expectation.

Remark 4. Moments can be recovered from kth order factorial moments. For example,
’ 2 ’
E[X] =¥ (1), E[X?) =¥ (1) + ¥x(1).

Theorem 1.13. Two non-negative integer-valued random variables have the same probability distribution iff their
z-transforms are equal.

Proof. The necessity is clear. For sufficiency, we see that ‘i’gé() (0) = k!px (k). Further, interchanging the
derivative and the summation (by dominated convergence theorem), we get the second result. O

2 Gaussian Random Vectors

Definition 2.1. For a random vector X : () — R" defined on a probability space (Q,F,P), we can define the
characteristic function @y : R"” — C by ®x (1) £ Ee/*X) where u € R".

Remark 5. If X : ) — R" is an independent random vector, then ®x (u) = [TL; ®x, (u;) for all u € R".

Definition 2.2 (I.i.d. Gaussian random vector). For a probability space (Q,7F, P), an i.i.d. Gaussian random
vector X : () — R” is a continuous random vector defined by its density function

n

fX(x)_lez)n/z ( 2 ) for all x € R™.
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for some real scalar y1 and positive 02 € R

Remark 6. For an i.i.d. Gaussian random vector with density parametrized by (y1,0?), the components are

i.i.d. Gaussian random variables with mean y and variance o2

Remark 7. The characteristic function ®x of an i.i.d. Gaussian random vector X : () — IR” parametrized by
(p1,0?) is given by
n (72 n ) ) n
u) =] [&x,(u;) = exp ( — 5 L +im Zui)-
i=1 i=1 i=1
Lemma 2.3. For an i.i.d. zero mean unit variance Gaussian vector Z : Q) — R", vector &« € R", and scalar y € R,
the affine combination Y £ y + (a, Z) is a Gaussian random variable.

Proof. From the linearity of expectation and the fact that Z is a zero mean vector, we get EY = p. Further,
from the linearity of expectation and the fact that E[ZZT] = I, we get

n n

n
02 2 Var(Y) = E(Y zz 00 E[Z,Z;) = (a,0) = ||a] 3 = ) a?.
i=1k=1 i=1

To show that Y is Gaussian, it suffices to show that ®y(u) = exp(— ”22‘72 + jup) for any u € R. Recall that
Z is an independent random vector with individual components being identically zero mean unit variance

Gaussian. Therefore, ®7, (1) = exp(— —) and we can compute the characteristic function of Y as
2,2

@y (1) = Ee"Y = oM Jel% — el ]‘[cbz ua;) = e><p(—ﬂ + jup).
i=1 i=

O

Definition 2.4 (Gaussian random vector). For a probability space (Q),%,P), a Gaussian random vector
X : Q) = R” can be written as

X=u+AZ,
from some vector y € R”, matrix A € R"*", and i.i.d. Gaussian random vector Z : () — R" with mean 0 and
variance 1. We denote the covariance matrix for the Gaussian vector X by £ £ E(X — u)(X — u)T.



Remark 8. The components of the Gaussian random vector are Gaussian random variables with mean y;
and variance Y} ; Aizk = (AAT);;, since each component X; = y; + Y_p_; A; xZx is an affine combination of
zero mean unit variance i.i.d. random variables.

Lemma 2.5. For a Gaussian random vector X =y + AZ for y € R", A € R**", and ii.d. zero mean unit variance
Gaussian random vector Z, the covariance matrix is ¥. = AAT.

Proof. We can write X; = p; + Y/ _1 A; xZx and we get EX; = y; from linearity of expectations and the fact
that EZ; = 0 for all k € [n]. Similarly, the (i,j)th component of covariance matrix is the mean of

n n n n
(Xi =) (Xj— 1) = Y Y AiAj0ZiZo = Y AigAipZi + Y AixAj i ZkZy.
(=1k=1 k=1 kAL
From the linearity of expectation, and the fact that Z is an independent zero mean unit variance random
vector, we get ;i = (AAT); ;. O

Proposition 2.6. The density for a Gaussian random vector X : Q) — R" with mean y € R" and invertible covariance

matrix ¥ € R"*", is given by

1 1 Ty -1 )
X)=—F——==—exp| —z(x—p) 2 (x— orall x € R".
() = s o (-0 ) £
Proof. We can write X = + %27, where Z : ) — R is an i.i.d. zero mean unit variance Gaussian random
vector. Then, we observe that Z = X2 (X — ). This implies that the Jacobian matrix J(z) = >~%, since

: _1
the (i,j)th component of the Jacobian matrix J(z) is given by J; ;(z) = 3—2 =X j,iz, i,j € [n]. Recall that the
density of Z is fz(z) = (;n)” exp(—1z7z), and from the transformation of random vectors, we get
1

Fx(x) = f2(E7 3 (x — ) det(E7%) =

1 - n
(271)"/2 det(z)1/2 exp ( - §(x —w)'E  (x— ;t)), x €R".

Remark 9. For any u € R", we compute the characteristic function ®x from the distribution of Z as

() = B ") = Bexp (j )+ (ATu,Z) ) = explj (1w,1))@2(ATw) = exp(j (1) — 2u" ).
Lemma 2.7. If the components of the Gaussian random vector are uncorrelated, then they are independent.

Proof. If a Gaussian vector is uncorrelated, then the covariance matrix X is diagonal. It follows that we can
write fx(x) =T, fx, (x;) for all x € R". O
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