Lecture-12: Almost sure convergence

1 Point-wise convergence

Consider a random sequence X : () — RN defined on a probability space (), F, P), then each X, 2 ,0X:
() — R is a random variable. There are many possible definitions for convergence of a sequence of random
variables. One idea is to consider X(w) € RN as a real valued sequence for each outcome w, and consider
the lim,, X, (w) for each outcome w.

Definition 1.1 (point wise convergence). A random sequence X : QO — RN defined on a probability space
(Q),F,P) converges point-wise to a random variable X, : ) — R, if for all outcomes w € ), we have

Iim X, (w) = Xeo(w).
n
Remark 1. This is a very strong convergence. Intuitively, what happens on an event of probability zero is

not important. We will strive for a weaker notion of convergence, where the sequence of random variable
converge point-wise on a set of outcomes with probability one.

2 Almost sure statements

Definition 2.1. A statement holds almost surely (a.s.) if there exists an event called the exception set N € &
with P(N) = 0 such that the statement holds for all w ¢ N.

Example 2.2 (Almost sure equality). Two random variables X,Y defined on the probability space
(Q),F,P) are said to be equal a.s. if the followng exception set

N2{weQ:X(w) #Y(w)} €T,

has probability measure P(N) = 0. Then Y is called a version of X, and we can define an equivalence
class of a.s. equal random variables.

Example 2.3 (Almost sure monotonicity). Two random variables X, Y defined on the probability space
(Q,F,P) are said to be X < Y a.s. if the exception set N £ {w € Q: X(w) > Y(w)} € F has probability
measure P(N) = 0.

3 Almost sure convergence

Definition 3.1 (Almost sure convergence). A random sequence X : ) — RN defined on the probability
space (Q),F,P) converges almost surely, if the following exception set

N2 {w €eQ: limingn(w) < limsup X, (w) or limsup X, (w) = oo} €7,
n n

has zero probability. Let X be the point-wise limit of the sequence of random variables X : O — RN on
the set N¢, then we say that the sequence X converges almost surely to X, and denote it as

IimX,, = X« a.s.
n



Example 3.2 (Convergence almost surely but not everywhere). Consider the probability space
([0,1],B([0,1]),A) such that A([a,b]) =b —a for all 0 < a < b < 1. For each n € N, we define the scaled
indicator random variable X, : 3 — {0,1} such that

Let N = {0}, then for any w ¢ N, there exists m = [%1 € N, such that for all n > m, we have X, (w) = 0.
That is, lim,, X;, = 0 a.s. since A(N) = 0. However, X;,(0) = n for all n € IN.

4 Convergence in probability

Definition 4.1 (convergence in probability). A random sequence X : Q — RN defined on the probability
space (Q),F,P) converges in probability to a random variable X : Q — R, if lim, P(A,(e)) = 0 for any
€ > 0, where

An(e) 2 {w e Q: |Xy(w) — Xeo(w)| > €} € F.
Remark 2. lim, X, = X a.s. means that for almost all outcomes w, the difference X, (w) — Xeo(w) gets
small and stays small.

Remark 3. lim, X, = X i.p. is a weaker convergence than a.s. convergence, and merely requires that the
probability of the difference X, (w) — Xeo(w) being non-trivial becomes small.

Example 4.2 (Convergence in probability but not almost surely). Consider the probability space
([0,1],B([0,1]),A) such that A([a,b]) =b —a for all 0 < a < b < 1. For each k € IN, we consider the se-
quence Sy = Zﬂ-‘zl i, and define integer intervals I, = {Sy_; +1,...,S;}. Clearly, the intervals (I; : k € N)
partition the natural numbers, and each n € IN lies in some I , such that n = Sy 1 + i, for i, € [ky].
Therefore, for each n € IN, we define indicator random variable X, : QO — {0,1} such that

For any w € [0,1], we have X, (w) = 1 for infinitely many values since there exist infinitely many (i, k)

pairs such that (';1) <w< %, and hence limsup, X, («w) = 1 and hence lim, X, (w) # 0. However,
lim, X;,(w) = 0 in probability, since

lirrln)\{Xn(w) 20 = liyrln 0.
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5 Infinitely often and all but finitely many

Lemma 5.1 (infinitely often and all but finitely many). Let (A, € F:n € IN) be a sequence of events.

(a) For some subsequence (ky, : n € IN) depending on w, we have

limsupA, = {weQ:we A, neN} = {a) €Q: ) 1y (w)= oo} = { A, infinitely often } .
n neN

(b) For a finite ng(w) € N depending on w, we have

liminfA, ={w e Q:w e A, foralln > ny(w)} = {w €0: ) Ta(w)< oo} = { Ay, for all but finitely many n} .
" nelN
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Proof. Let (A, € F:n € IN) be a sequence of events.

(a) Let w € limsup, Ay = NyeN Uksn Ak, then w € Uy, A for all n € IN. Therefore, for each n € IN, there
exists k; € IN such that w € Ay, and hence

Y. La(w) > ) 1a, (w) = co.

jEN nelN

Conversely, if } ;e 1 Aj (w) = co, then for each n € IN there exists a k, € N such that w € Ay, and hence
w € Uy, Ay foralln € IN.

(b) Let w € liminf, Ay = UpeN N>y Ak, then there exists 19(w) such that w € A, for all n > np(w). Con-
versely, if Yjen ILA; (w) < oo, then there exists ng(w) such that w € A, for all n > nyp(w).

O

Theorem 5.2 (Convergence a.s. implies in probability). Ifa sequence of random variables X : Q — RN defined
on a probability space (Q),F, P) converges a.s. to a random variable Xo, : Q) — R, then it converges in probability to
the same random variable.

Proof. Lete >0, and define events A, £ {w € O : | X, (w) — Xeo(w)| > €} for each n € N. We will show that
if lim, X, = Xo a.s., then lim, P(A,) = 0. To this end, let N be the exception set such that

N= {w € O :liminf X, (w) < limsup X, (w) or limsup X, (w) = oo}.
n n

n

For w ¢ N, there exists an ng(w) such that | X, — X«| < € for all n > ng. Thatis, w € A§, for all n > ny(w)
and hence N°¢ C liminf, Aj,. It follows that 1 = P(liminf, A},). Since liminf, Aj, = (limsup, A;;)¢, we get
0 = P(limsup, Ay) = lim;, P(Uy>, Ax) = lim, P(A,) > 0. O

6 Borel-Cantelli Lemma
Proposition 6.1 (Borel-Cantelli Lemma). Let (A, € F:n € IN) be a sequence of events such that Y, cn P(An) <
oo, then P(Ay i.0.) =0.

Proof. We can write the probability of infinitely often occurrence of A,, by the continuity and sub-additivity
of probability as
P(limsup A,) = lim P(Ug>, A) < lim Y P(Ag) =0.
n

k>n

The last equality follows from the fact that ), .y P(Ar) < . O
Proposition 6.2 (Borel zero-one law). If (A, € F:n € IN) is a sequence of independent events, then

0, iff £yP(An) <oo,

L iff Ty P(An) = 0.

Proof. Let (A, € F:n € IN) be a sequence of independent events.

(a) From Borel-Cantelli Lemma, if }_,, P(A,) < oo then P(A, i.0.) =0.

P(Ayio.) = {

(b) Conversely, suppose ), P(A;;) = o, then Y-, P(Ax) = oo for all n € N. From the definition of limsup
and liminf, continuity of probability, and independence of events (Ax € F: k € IN) we get

m
P(A,io0)=1- P(limingﬁ) =1- li)gnli"rlnP(ﬂgznAi) =1- liignli"rznkl_l(l — P(Ap)).
=n

Since 1 — x < e * for all x € R, from the above equation, the continuity of exponential function, and the
hypothesis, we get

1>P(Ayio)>1— li’rlnli%ne_zlrfnznp(‘qk) =1—limexp(~ ) P(Ay)) =1.

k>n



Example 6.3 (Convergence in probability can imply almost sure convergence). Consider a random
Bernoulli sequence X : Q) — {0,1}N defined on the probability space (Q), F, P) such that P {X,, = 1} = p,
for all n € IN. Note that the sequence of random variables is not assumed to be independent, and
definitely not identical. If lim, p, = 0, then we see that lim, X,, = 0 in probability.

In addition, if }_,cp pn < 0, then lim, X,, = 0 a.s. To see this, we define event A, 4 {Xn=1} €3
for each n € IN. Then, applying the Borel-Cantelli Lemma to sequence of events (A, : n € IN), we get

1=P((limsup A,)°) = P(limingfZ).

n

That is, lim, X, = 0 for w € liminf, A{, implying almost sure convergence.

Theorem 6.4. A random sequence X : Q — RN converges to a random variable X« : Q — R in probability, then
there exists a subsequence (ny : k € IN) C N such that (X, : k € IN) converges almost surely to Xe.

Proof. Letting 11 = 1, we define the following subsequence and event recursively for each j € IN,
m2inf {N > P{|X — Xl 5277} <27, forallr >N}, A2 {|x - Xe| > 277}
From the construction, we have limy 7 = 00, and P(4;) < 27/ for each j € N. Therefore, Y e P(Ax) < 00,

and hence by the Borel-Cantelli Lemma, we have P(limsup, A;) = 0. Let N = limsup, Ay be the exception
set such that for any outcome w ¢ N, for all but finitely many j € IN

X, (w) = Xeo(w) | <277

That is, for all w ¢ N, we have lim, X, (w) = X (w). O

Theorem 6.5. A random sequence X : Q0 — RN converges to a random variable X« in probability iff each subse-
quence (Xp, : k € IN) contains a further subsequence (Xy, :j € IN) converges almost surely to Xeo.
j
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