Lecture-14: Weak convergence

1 Convergence in distribution

Definition 1.1 (convergence in distribution). A random sequence X : Q — RN defined on a probability
space (Q),F,P) converges in distribution to a random variable X, : () — R defined on a probability space
(Y, 9, P if

lim Fx, (x) = Fx,, (%)

at all continuity points x of Fx_. Convergence in distribution is denoted by lim;, X, = Xo in distribution.

Proposition 1.2. Consider a random sequenceX : QO — RN defined on a probability space (Q,F, P) and a random
variable X« : QO — R defined on another probability space (OO, F', P"). Then the following statements are equivalent.

(a) lim, X,, = X in distribution.
(b) lim, E[g(Xy)] = E[g(X)] for any bounded continuous function g.
(c) Characteristic functions converge point-wise, i.e. lim, ®x, (1) = x_ (u) for each u € R.

Proof. Let X : O — RN be a sequence of random variables and let X : ) — R be a random variable. We
will show that (a) = (b) = (c) = (a).

(a) = (b): Letlim, X, = X« in distribution, then lim,, [\ g(x)dFx, (x) = [ g §(x)lim, dFy, (x) by the
bounded convergence theorem for any bounded continuous function g.

(b)) = (c): Letlim,E[g(X,)] = E[g(Xw)] for any bounded continuous function g. Taking g(x) = e/**, we
get the result.

(c) == (a): The proof of this part is technical and is omitted.

Example 1.3 (Convergence in distribution but not in probability). Consider a sequence of non-
degenerate continuous i.i.d. random variables X : ) — RN and independent random variable Y : QO —
R with the common distribution Fy. Then Fx, = Fy for alln € N, and hence lim,, X;, = Y in distribution.
When each X,, is zero mean Gaussian with variance ¢?2, it follows that X,, — Y is zero mean Gaussian
with variance 202. Therefore, for € < oy/T and all n € N
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Lemma 1.4 (Convergence in probability implies in distribution). Consider a sequence X : Q) — RN of random
variables and a random variable X : Q3 — R defined on a probability space (Q0,F,P), such that lim, X, = Xeo in
probability, then lim, X,, = X in distribution.

Proof. Fix € > 0, and consider the event

En(e) £{w € Q:|Xp(w) — Xeo(w)| > €} = {Xn & [Xoo — €, X0 + €]} € F.



We further define events Ay, (x) £ {X, < x} and Ax_ (x) £ {Xe < x}, then we can write

Ay (X) N Ax (v +€) C Ax (x+e), A (X) N A (3 +€) € Aue),
Ax. (x —€)NAx,(x) C Ax, (x), Ax,(x —e) N A% (x) C An(e).

From the above set relations, law of total probability, and union bound, we have
Fx,,(x —€) = P(En) < Fx, (x) < Fx,(x +€) + P(En).
From the convergence in probability, we have lim, P(E,) = 0. Therefore, we get

Fx.(x —€) <liminfFx, (x) < limsupFx, (x) < Fx_(x +¢€).
n n

We get the result at the continuity points of Fx, since the choice of € was arbitrary. O

Theorem 1.5 (Central Limit Theorem). Consider an i.i.d. random sequence X : QO — RN defined on a probability
space (Q,F,P), with EX,, = p and Var(X,) = o2 for all n € N. We define the n-sum as S, = Y1, X; and consider

2
a standard normal random variable Y : Q) — R with density function fy(y) = L7 forally € R. Then,
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Proof. The classical proof is using the characteristic functions. Let Z; ? for all i € IN, then the shifted
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that the characteristic function of converges to the characteristic function of the standard normal. We define
the characteristic functions

=Y in distribution.

and scaled n-sum is given by Z;. We use the third equivalence in Proposition |1.2to show

@, (1) 2 Eexp (qu), @7 (1) £ Eexp(juzy), Dy (1) 2 Eexp(juY).

We can compute the characteristic function of the standard normal as

. 2 .
Dy (u) = \/12771./ye1126_u22 exp (_(y21u)> dy:e_Tz.

Since the random sequence Z : QO — RN is a zero mean i.i.d. sequence, using the Taylor expansion of the
characteristic function, we have

i -lsen (52 o ()] -1 ()]

For any u € IR, taking limit n € IN, we get the result. O

2 Strong law of large numbers

Definition 2.1. For a random sequence X : ) — RN defined on a probability space (Q,F, P) with bounded

mean E |X,| < oo for all n € N, we define the n-sum as S, £ Y./ ; X; and the empirical n-mean > for each
n € IN. For each n € IN, we define event

E,={weQ:|S, —ES,| >ne}cT.

Theorem 2.2 (L* strong law of large numbers). Let X : O — RN be a sequence of independent random variables
defined on probability space (Q), F, P) with bounded mean EEX,, for each n € N and uniformly bounded fourth central
moment sup,,. E (X, — EX;)* < B < co. Then, the empirical n-mean converges to lim,, % almost surely.



Proof. Recall that E(S, —ES,)* =E(LL, (X; —EX;))* = L E(X; —BX;)* + 310, ¥ B(X; — EX)2E(X; —
]EXj)z. Recall that when the fourth moment is bounded, then so is second moment. Hence, sup; n E(X; —
EX;)? < C for some C € R Therefore, from the Markov’s inequality, we have

E(S, — ESy,)* o nB+3n(n—1)C

P(En) < ntet = ntet

It follows that the Y, .y P(E;) < oo, and hence by Borel Canteli Lemma, we have
P{E;, for all but finitely many n} = 1.
Since, the choice of € was arbitrary, the result follows. O

Theorem 2.3 (L? strong law of large numbers). Let X : QO — RN be a sequence of pair-wise uncorrelated random
variables defined on a probability space (), F,P) with bounded mean EX,, for all n € N and uniformly bounded

variance sup,, . Var(Xy,) < B < co. Then, the empirical n-mean converges to lim, IE;?" almost surely.

Proof. For each n € N, we define events F, = E,2, and

k
Gné{ max S —S,2 —E(Sk—S,2)] >n2e}: U {weQ: Y (Xi —EX;) >nze}.
n2<k<(n+1)2 n2<k< (n+1)2 i=n2
From the Markov’s inequality and union bound, we have

n’ (n+1)>-1 2 2
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Therefore, e P(Fn) < coand Y,cn P(Gy) < oo, and hence by Borel Canteli Lemma, we have

lim S2—ES,» — lim Sk —S,2 —E(Sk—S,2)

=0a.s.
n n2 n n2

The result follows from the fact that for any k € N, there exists n € N such that k € {n?,...,(n +1)2 -1}

and hence
‘SkilESk| < |Sn2_]ESn2| + |Sk_Sn2_]E(Sk_Sn2)|
k = n2 n2 ’

O

Theorem 2.4 (L' strong law of large numbers). Let X : QO — RN be a random sequence defined on a probability
space (Q), F, P) such that sup,, . E|X,| < B < co. Then, the empirical n-mean converges to lim, ]ETS” almost surely.
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