

Lecture-15: Conditional Expectation

1 Conditional expectation given a non trivial event

Consider a probability space (Ω, \mathcal{F}, P) and an event $B \in \mathcal{F}$ such that $P(B) > 0$. Then, the conditional probability of any event $A \in \mathcal{F}$ given event B was defined as

$$P(A | B) = \frac{P(A \cap B)}{P(B)}.$$

Definition 1.1 (Conditional distribution given a non trivial event). Consider a random variable $X : \Omega \rightarrow \mathbb{R}$ defined on a probability space (Ω, \mathcal{F}, P) , and a non trivial event $B \in \mathcal{F}$ such that $P(B) > 0$, then the conditional distribution of X given event B is denoted by $F_{X|B} : \mathbb{R} \rightarrow [0, 1]$ and $F_{X|B}(x)$ is defined as the probability of event $A_X(x) \triangleq X^{-1}(-\infty, x]$ conditioned on event B for all $x \in \mathbb{R}$. That is,

$$F_{X|B}(x) \triangleq P(A_X(x) | B) = \frac{P(A_X(x) \cap B)}{P(B)} \text{ for all } x \in \mathbb{R}.$$

Remark 1. For a discrete random variable $X : \Omega \rightarrow \mathcal{X}$, the conditional probability mass function of X given a non trivial event B is given by $P_{X|B}(x) = \frac{P(X^{-1}\{x\} \cap B)}{P(B)}$ for all $x \in \mathcal{X}$.

Remark 2. For a continuous random variable $X : \Omega \rightarrow \mathbb{R}$, the conditional density of X given a non trivial event B is given by $f_{X|B}(x) = \frac{dF_{X|B}(x)}{dx}$ for all $x \in \mathbb{R}$.

Example 1.2 (Conditional distribution). Consider the probability space (Ω, \mathcal{F}, P) corresponding to a random experiment where a fair die is rolled once. For this case, the outcome space $\Omega = [6]$, the event space $\mathcal{F} = \mathcal{P}([6])$, and the probability measure $P(\omega) = \frac{1}{6}$ for all $\omega \in \Omega$.

We define a random variable $X : \Omega \rightarrow \mathbb{R}$ such that $X(\omega) = \omega$ for all $\omega \in \Omega$, and an event $B \triangleq \{\omega \in \Omega : X(\omega) \leq 3\} = [3] \in \mathcal{F}$. We note that $P(B) = 0.5$ and the conditional PMF of X given B is

$$P_{X|B}(x) = \frac{1}{3} \mathbb{1}_{\{x=3\}} + \frac{1}{3} \mathbb{1}_{\{x=2\}} + \frac{1}{3} \mathbb{1}_{\{x=1\}}.$$

Remark 3. For a random variable $X : \Omega \rightarrow \mathbb{R}$ and a non trivial event $B \in \mathcal{F}$ defined on a probability space (Ω, \mathcal{F}, P) , the conditional distribution $F_{X|B}$ is a distribution function. This follows from the fact that (i) $F_{X|B} \geq 0$, (ii) $F_{X|B}$ is right continuous, (iii) $\lim_{x \downarrow -\infty} F_{X|B}(x) = 0$ and $\lim_{x \uparrow \infty} F_{X|B}(x) = 1$.

Definition 1.3. Consider a random variable $X : \Omega \rightarrow \mathbb{R}$ defined on a probability space (Ω, \mathcal{F}, P) , and a non trivial event $B \in \mathcal{F}$ such that $P(B) > 0$, then the conditional expectation of X given event B is given as

$$\mathbb{E}[X|B] \triangleq \int_{x \in \mathbb{R}} x dF_{X|B}(x).$$

Remark 4. For a discrete random variable $X : \Omega \rightarrow \mathcal{X}$, the conditional expectation of X given a non trivial event B is given by $\mathbb{E}[X|B] = \sum_{x \in \mathcal{X}} x P_{X|B}(x)$.

Example 1.4 (Conditional expectation). For the random variable X and event B defined in Example 1.2, the conditional expectation $\mathbb{E}[X|B] = 2$.

Consider two random variables X, Y defined on this probability space, then for $y \in \mathbb{R}$ such that $F_Y(y) > 0$, we can define events $A_X(x) \triangleq X^{-1}(-\infty, x]$ and $A_Y(y) = Y^{-1}(-\infty, y]$, such that

$$P(\{X \leq x\} \mid \{Y \leq y\}) = \frac{F_{X,Y}(x,y)}{F_Y(y)}.$$

The key observation is that $\{Y \leq y\}$ is a non-trivial event. How do we define conditional expectation based on events such as $\{Y = y\}$? When random variable Y is continuous, this event has zero probability measure.

2 Conditional expectation given an event space

Consider a random variable $X : \Omega \rightarrow \mathbb{R}$ defined on a probability space (Ω, \mathcal{F}, P) such that $\mathbb{E}|X| < \infty$ and a smaller event space $\mathcal{G} \subset \mathcal{F}$. For each non trivial event $G \in \mathcal{G}$, we know how to define the conditional distribution $F_{X|G}$ and $\mathbb{E}[X|G]$. For any trivial event $N \in \mathcal{G}$, these are undefined.

Definition 2.1 (Conditional expectation given an event space). The conditional expectation of random variable X given event space \mathcal{G} is a random variable $\mathbb{E}[X \mid \mathcal{G}] : \Omega \rightarrow \mathbb{R}$ defined on the same probability space, such that

- (i) $Z \triangleq \mathbb{E}[X \mid \mathcal{G}]$ is \mathcal{G} measurable,
- (ii) for all $G \in \mathcal{G}$, we have $\mathbb{E}[X \mathbb{1}_G] = \mathbb{E}[Z \mathbb{1}_G]$,
- (iii) $\mathbb{E}|Z| < \infty$.

Lemma 2.2. Consider a random variable $X : \Omega \rightarrow \mathbb{R}$ defined on a probability space (Ω, \mathcal{F}, P) and a sub event space $\mathcal{G} \subseteq \mathcal{F}$. The conditional expectation of X given \mathcal{G} is an a.s. unique random variable.

Proof. Consider two random variables $Z_1 = \mathbb{E}[X \mid \mathcal{G}]$ and $Z_2 = \mathbb{E}[X \mid \mathcal{G}]$. Then from the definition, Z_1, Z_2 are \mathcal{G} measurable random variables, and $|Z_2 - Z_1|$ is also \mathcal{G} measurable. Therefore, $G_n \triangleq \left\{ |Z_2 - Z_1| > \frac{1}{n} \right\} \in \mathcal{G}$ and $\mathbb{E}[|Z_2 - Z_1| \mathbb{1}_{G_n}] = 0$ by definition. It follows that $P(\lim_n G_n) = 0$. \square

Example 2.3. Consider a random variable $X : \Omega \rightarrow \mathbb{R}$ defined on a probability space (Ω, \mathcal{F}, P) with $\mathbb{E}|X| < \infty$, and the coarsest event space $\mathcal{G} = \{\emptyset, \Omega\} \subseteq \mathcal{F}$ and finest event space \mathcal{F} . We observe that $\mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}X$ a.s. uniquely, since (i) $\mathbb{E}X$ is a constant and hence \mathcal{G} measurable, (ii) $\mathbb{E}[\mathbb{E}X \mathbb{1}_\emptyset] = \mathbb{E}[X \mathbb{1}_\emptyset] = 0$ and $\mathbb{E}[\mathbb{E}X \mathbb{1}_\Omega] = \mathbb{E}[X \mathbb{1}_\Omega] = \mathbb{E}X$, and (iii) $\mathbb{E}|\mathbb{E}X| = |\mathbb{E}X| \leq \mathbb{E}|X| < \infty$ from the Jensen's inequality.

We also observe that $\mathbb{E}[X \mid \mathcal{F}] = X$ a.s. uniquely, since (i) X is \mathcal{F} measurable random variable, (ii) $\mathbb{E}[X \mathbb{1}_G] = \mathbb{E}[X \mathbb{1}_G]$ for all events $G \in \mathcal{F}$, and (iii) $\mathbb{E}|X| < \infty$.

Remark 5. Expectation is averaging, and conditional expectation is averaging over event spaces. For the coarsest event space $\{\emptyset, \Omega\} \subseteq \mathcal{F}$ and finest event space \mathcal{F} , we can observe that the coarsest averaging is $\mathbb{E}[X \mid \{\emptyset, \Omega\}] = \mathbb{E}X$ and the finest averaging is $\mathbb{E}[X \mid \mathcal{F}] = X$.

Lemma 2.4. The mean of conditional expectation of random variable X given event space \mathcal{G} is $\mathbb{E}X$.

Proof. From the definition of event space $\Omega \in \mathcal{G}$, and from the definition of conditional expectation, we get $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mathbb{1}_\Omega] = \mathbb{E}[X \mathbb{1}_\Omega] = \mathbb{E}X$. \square

Definition 2.5 (Conditional expectation given a random variable). Consider two random variables $X, Y : \Omega \rightarrow \mathbb{R}$ defined on the same probability space (Ω, \mathcal{F}, P) such that $\mathbb{E}|X| < \infty$. The conditional expectation of X given Y is a random variable $\mathbb{E}[X \mid Y] \triangleq \mathbb{E}[X \mid \sigma(Y)]$ defined on the same probability space.

Example 2.6 (Conditioning on simple random variables). For a simple random variable $Y : \Omega \rightarrow \mathcal{Y} \subseteq \mathbb{R}$ defined on the probability space (Ω, \mathcal{F}, P) , we define fundamental events $E_y \triangleq Y^{-1}\{y\} \in \mathcal{F}$ for all $y \in \mathcal{Y}$. Then the sequence of events $E \triangleq (E_y \in \mathcal{F} : y \in \mathcal{Y})$ partitions the sample space, and we can write the event space generated by random variable Y as $\sigma(Y) = (\cup_{y \in \mathcal{Y}} E_y : I \subseteq \mathcal{Y})$.

For a random variable $X : \Omega \rightarrow \mathbb{R}$ defined on the same probability space, the random variable $Z \triangleq \mathbb{E}[X | Y]$ is $\sigma(Y)$ measurable. Therefore, $\mathbb{E}[X | Y] = \sum_{y \in \mathcal{Y}} \alpha_y \mathbb{1}_{E_y}$ for some $\alpha \in \mathbb{R}^{\mathcal{Y}}$. We verify that $Z : \Omega \rightarrow \mathbb{R}$ is a $\sigma(Y)$ measurable random variable, since $\sigma(Z) \subseteq \sigma(Y)$. We can also check that $\mathbb{E}|Z| < \infty$. Further, we have $\mathbb{E}[Z \mathbb{1}_{E_y}] = \mathbb{E}[X \mathbb{1}_{E_y}]$ for any $y \in \mathcal{Y}$, which implies that $\alpha_y = \frac{\mathbb{E}[X \mathbb{1}_{E_y}]}{P_Y(y)}$ for any $y \in \mathcal{Y}$. Notice that

$$\mathbb{E}[X | E_y] = \int_{x \in \mathbb{R}} x dF_{X|E_y}(x) = \frac{1}{P_Y(y)} \int_{x \in \mathbb{R}} x dP(A_X(x) \cap E_y) = \frac{1}{P_Y(y)} \mathbb{E}[X \mathbb{1}_{E_y}] = \alpha_y.$$

Remark 6. There are three main takeaways from this definition. For a random variable Y , the event space generated by Y is $\sigma(Y)$.

1. The conditional expectation $\mathbb{E}[X | Y] = \mathbb{E}[X | \sigma(Y)]$ and is $\sigma(Y)$ measurable. That is, $\mathbb{E}[X | Y]$ is a Borel measurable function of Y . In particular when Y is discrete, this implies that $\mathbb{E}[X | Y]$ is a simple random variable that takes value $\mathbb{E}[X | E_y]$ when $\omega \in E_y$, and the probability of this event is $P_Y(y)$. When Y is continuous, $\mathbb{E}[X | Y]$ is a continuous random variable with density f_Y .
2. Expectation is averaging. Conditional expectation is averaging over event spaces. We can observe that the coarsest averaging is $\mathbb{E}[X | \{\emptyset, \Omega\}] = \mathbb{E}X$ and the finest averaging is $\mathbb{E}[X | \sigma(X)] = X$. Further, $\mathbb{E}[X | \sigma(Y)]$ is averaging of X over events generated by Y . If we take any event $A \in \sigma(Y)$ generated by Y , then the conditional expectation of X given Y is fine enough to find the averaging of X when this event occurs. That is, $\mathbb{E}[X \mathbb{1}_A] = \mathbb{E}[\mathbb{E}[X | Y] \mathbb{1}_A]$.
3. If $X \in L^1$, then the conditional expectation $\mathbb{E}[X | Y] \in L^1$.

3 Conditional distribution given an event space

Definition 3.1 (Conditional probability given an event space). The conditional probability $P(A | \mathcal{G})$ of an event $A \in \mathcal{F}$ given event space \mathcal{G} is defined as $P(A | \mathcal{G}) = \mathbb{E}[\mathbb{1}_A | \mathcal{G}]$.

Remark 7. From the definition of conditional expectation, it follows that $P(A | \mathcal{G}) : \Omega \rightarrow [0, 1]$ is a \mathcal{G} measurable random variable, such that $\mathbb{E}[\mathbb{1}_G P(A | \mathcal{G})] = P(A \cap G)$ for all $G \in \mathcal{G}$, and is uniquely defined up to sets of probability zero.

Example 3.2. For the trivial sigma algebra $\mathcal{G} = \{\emptyset, \Omega\}$, the conditional probability is the constant function $P(A | \{\emptyset, \Omega\}) = P(A)$.

Example 3.3. If $A \in \mathcal{G}$, then $P(A | \mathcal{G}) = \mathbb{1}_A$.

Definition 3.4 (Conditional distribution given an event space). Consider a random variable $X : \Omega \rightarrow \mathbb{R}$ defined on probability space (Ω, \mathcal{F}, P) such that $\mathbb{E}|X| < \infty$ and a sub event space $\mathcal{G} \subseteq \mathcal{F}$. Then, we can define the conditional distribution of random variable X given sub event space \mathcal{G} as

$$F_{X|\mathcal{G}}(x) \triangleq P(A_X(x) | \mathcal{G}) \text{ for all } x \in \mathbb{R}.$$

Definition 3.5 (Conditional distribution given a random variable). Consider two random variables $X, Y : \Omega \rightarrow \mathbb{R}$ defined on the same probability space (Ω, \mathcal{F}, P) such that $\mathbb{E}|X| < \infty$. The conditional distribution of X given Y is defined as $F_{X|Y}(x) \triangleq P(A_X(x) | \sigma(Y))$ for all $x \in \mathbb{R}$.

Example 3.6 (Conditional distribution given simple random variables). Consider a random variable $X : \Omega \rightarrow \mathbb{R}$ and a simple random variable $Y : \Omega \rightarrow \mathcal{Y}$ defined on the same probability space. Since random variables $F_{X|Y}(x) = \mathbb{E}[\mathbb{1}_{A_X(x)} | Y]$ are $\sigma(Y)$ measurable, they can be written as $F_{X|Y}(x) = \sum_{y \in \mathcal{Y}} \beta_{x,y} \mathbb{1}_{E_y}$ for some $\alpha \in \mathbb{R}^{\mathcal{Y}}$ and $E_y = Y^{-1}\{y\}$ for all $y \in \mathcal{Y}$. Further, we have $\mathbb{E}[F_{X|Y}(x) \mathbb{1}_{E_y}] = \mathbb{E}[\mathbb{1}_{A_X(x)} \mathbb{1}_{E_y}]$ for any $y \in \mathcal{Y}$, which implies that $\beta_{x,y} = \frac{P(A_X(x) \cap E_y)}{P_Y(y)} = F_{X|E_y}(x)$ for any $y \in \mathcal{Y}$. It follows that $F_{X|Y}$ is a $\sigma(Y)$ measurable simple random variable.

Example 3.7 (Conditional expectation). Consider a fair die being thrown and the random variable X takes the value of the outcome of the experiment. That is, $X \in \{1, \dots, 6\}$ with $P[X = i] = 1/6$ for $i \in \{1, \dots, 6\}$. Define another random variable $Y = \mathbb{1}_{\{X \leq 3\}}$. Then the conditional expectation of X given Y is a random variable given by

$$\mathbb{E}[X|Y] = \begin{cases} \mathbb{E}[X|Y=1] = 2 & \text{w.p. 0.5} \\ \mathbb{E}[X|Y=0] = 5 & \text{w.p. 0.5.} \end{cases}$$

It is easy to see that $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X] = 3.5$.

Example 3.8 (Conditional distribution). Consider the zero-mean Gaussian random variable N with variance σ^2 , and another independent random variable $Y \in \{-1, 1\}$ with PMF $(1-p, p)$ for some $p \in [0, 1]$. Let $X = Y + N$, then the conditional distribution of X given simple random variable Y is

$$F_{X|Y} = F_{X|\{Y=-1\}} \mathbb{1}_{\{Y=-1\}} + F_{X|\{Y=1\}} \mathbb{1}_{\{Y=1\}},$$

where $F_{X|\{Y=\mu\}}(x)$ is $\int_{-\infty}^x e^{-\frac{(t-\mu)^2}{\sigma^2}} dt$.

Definition 3.9. When X, Y are both continuous random variables, there exists a joint density $f_{X,Y}(x, y)$ for all $(x, y) \in \mathbb{R}^2$. For each $y \in \mathcal{Y}$ such that $f_Y(y) > 0$, we can define a function $f_{X|Y} : \mathbb{R}^2 \rightarrow \mathbb{R}_+$ such that

$$f_{X|Y}(x, y) \triangleq \frac{f_{X,Y}(x, y)}{f_Y(y)}, \text{ for all } x \in \mathbb{R}.$$

Exercise 3.10. For continuous random variables X, Y , show that the function $f_{X|Y}(x, y)$ is a density of continuous random variable X for each $y \in \mathbb{R}$.