
Lecture-16: Conditional expectation

1 Conditional expectation conditioned on a random vector

Let X : Ω → Rn be a random vector defined on a probability space (Ω,F, P). Recall that the projection
πi : Rn → R of n-dimensional vector X on its ith component Xi = πi(X), is a Borel measurable function. It
follows that Xi = πi ◦ X is a random variable for each i ∈ [n]. Further the event space generated by random
vectors X is given by

σ(X) = σ(X1, . . . , Xn).

Remark 1. Let (Ai ∈ F : i ∈ [n]) be an n-length sequence of events, then X = (1Ai : i ∈ [n]) is a random vector,
and the smallest event space generated by this random vector is σ(X) = σ(A1, . . . , An).

Definition 1.1 (Conditional expectation given a random vector). Consider a random variable X : Ω → R

such that E |X| < ∞ and a random vector Y : Ω → Rn for some n ∈ N, defined on the same probability
space (Ω,F, P). The conditional expectation of random variable X given the random vector Y is defined as
E[X | Y]≜ E[X | σ(Y)].

Lemma 1.2. For a random sequence X : Ω → RN defined on the same probability space (Ω,F, P), we have

σ(X1, . . . , Xn) ⊆ σ(X1, . . . , Xn+1), n ∈ N.

Proof. For any x ∈ Rn+1, any generating event for collection σ(X1, . . . , Xn) is of the form ∩n
i=1X−1

i (−∞, xi]⊆
∩n

i=1X−1
i (−∞, xi] ∩ X−1

n+1(R), a generating event for collection σ(X1, . . . , Xn+1).

2 Properties of Conditional Expectation

Proposition 2.1. Let X,Y be random variables on the probability space (Ω,F, P) such that E |X| ,E |Y| < ∞. Let G
and H be event spaces such that G,H ⊂ F. Then the following statements are true.

1. Identity: If X is G-measurable and E |X| < ∞, then X = E[X
∣∣ G] a.s. In particular, c = E[c

∣∣ G], for any
constant c ∈ R.

2. Linearity: E[(αX + βY)
∣∣ G] = αE[X

∣∣ G] + βE[Y
∣∣ G] a.s.

3. Monotonicity: If X ⩽ Y a.s., then E[X
∣∣ G]⩽ E[Y

∣∣ G] a.s.

4. Conditional Jensen’s inequality: If ψ : R→R is convex and E |ψ(X)|<∞, then ψ(E[X
∣∣G])⩽E[ψ(X)

∣∣G]
a.s.

5. Pulling out what’s known: If Y is G-measurable and E |XY| < ∞, then E[XY
∣∣ G] = YE[X

∣∣ G] a.s.

6. Tower property: If H ⊆ G, then E[E[X
∣∣ G] ∣∣H] = E[X

∣∣H] a.s.

7. Irrelevance of independent information: If H is independent of σ(G,σ(X)) then E[X|σ(G,H)] =E[X
∣∣G] a.s.

In particular, if X is independent of H, then E[X
∣∣H] = E[X] a.s.

8. L2-projection: If E |X|2 < ∞, then ζ∗ ≜ E[X
∣∣ G] minimizes E[(X − ζ)2] over all G-measurable random

variables ζ such that E |ζ|2 < ∞.
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Proof. In all the properties below, we have to show that conditional expectation given an event space equals
another random variable almost surely. To this end, we will show that the right hand side satisfies the three
properties of the conditional expectation random variable, and hence is the conditional expectation from
almost sure uniqueness.

1. Identity: It follows from the definition that X satisfies all three conditions for conditional expectation.
The event space generated by any constant function is the trivial event space {∅,Ω} ⊆ G for any event
space. Hence, E[c

∣∣ G] = c.

2. Linearity: Let Z ≜ E[(αX + βY)
∣∣ G] and Z1 ≜ E[X

∣∣ G] and Z2 ≜ E[Y
∣∣ G]. We have to show that

Z = αZ1 + βZ2 almost surely.

(i) From the definition of conditional expectation, we have E[X
∣∣ G],E[Y

∣∣ G] are G-measurable. In
addition, the linear map g : R2 → R defined by g(x)≜ αx1 + βx2 is Borel measurable. Therefore,
the linear combination αZ1 + βZ2 is G-measurable.

(ii) For any A ∈ G, from the linearity of expectation and definition of conditional expectation, we
have

E[(αZ1 + βZ2)1A] = αE[E[X
∣∣ G]1A] + βE[E[Y

∣∣ G]1A] = E[(αX + βY)1A].

(iii) From the definition of conditional expectation, we have E |Z1| ,E |Z2| are finite. Therefore, we
have

E |αZ1 + βZ2|⩽ |α|E |Z1|+ |β|E |Z2| < ∞.

This implies that αZ1 + βZ2 satisfies three properties of conditional expectation E[(αX + βY)
∣∣ G].

From the almost sure uniqueness of conditional expectation, we have Z = αZ1 + βZ2 almost surely.

3. Monotonicity: Let ϵ > 0 and define Aϵ ≜
{

E[X
∣∣ G]− E[Y

∣∣ G] > ϵ
}
∈ G. Then from the definition of

conditional expectation, we have

0 ⩽ ϵP(Aϵ) = E[ϵ1Aϵ
] < E[(E[X

∣∣ G]− E[Y
∣∣ G])1Aϵ

] = E[(X − Y)1Aϵ
]⩽ 0.

Thus, we obtain that P(Aϵ) = 0 for all ϵ > 0. Taking limit ϵ ↓ 0, we get

0 = lim
ϵ↓0

P(Aϵ) = P(lim
ϵ

Aϵ) = P(A0).

4. Conditional Jensen’s inequality: We will use the fact that a convex function can always be repre-
sented by the supremum of a family of affine functions. Accordingly, we will assume for a convex
function ψ : R → R, we have linear functions ϕi : R → R and constants ci ∈ R for all i ∈ I such that
ψ = supi∈I(ϕi + ci).

For each i ∈ I, we have ϕi(E[X
∣∣ G]) + ci = E[ϕi(X)

∣∣ G] + ci ⩽ E[ψ(X)
∣∣ G] from the linearity and

monotonicity of conditional expectation. It follows that

ψ(E[X
∣∣ G]) = sup

i∈I
(ϕi(E[X

∣∣ G]) + ci)⩽ E[ψ(X)
∣∣ G].

5. Pulling out what’s known: From the almost sure uniqueness of conditional expectation, it suffices to
show that YE[X

∣∣ G] satisfies following three properties of the conditional expectation E[XY
∣∣ G]:

(i) the random variable YE[X
∣∣ G] is G-measurable,

(ii) E[XY1A] = E[YE[X
∣∣ G]1A] for any event A ∈ G, and

(iii) E
∣∣YE[X

∣∣ G]∣∣ is finite.

Part (i) is true since Y is given to be G-measurable, E[X
∣∣ G] is G-measurable by the definition of

conditional expectation, and product function is Borel measurable.

It suffices to show part (ii) and (iii) for simple G-measurable random variables Y = ∑y∈Y y1Ey where
Ey = Y−1 {y} ∈ G. For any A ∈ G, we have A ∩ Ey ∈ G for all y ∈ Y and ∪y∈Y(A ∩ Ey) = A.
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Part (ii) follow from the linearity of expectation and definition of conditional expectation E[X
∣∣ G],

such that

E[YE[X
∣∣ G]1A] = ∑

y∈Y
yE[1A∩Ey E[X

∣∣ G]] = ∑
y∈Y

yE[X1A∩Ey ] = E[X ∑
y∈Y

y1A∩Ey ] = E[XY1A].

Part (iii) follows from the fact that E |XY| is finite and the conditional Jensen’s inequality applied to
convex function || : R → R+ to get

∣∣E[X
∣∣ G]∣∣⩽ E[|X|

∣∣ G]. Therefore,

E[|Y|
∣∣E[X

∣∣ G]∣∣] = ∑
y∈Y

|y|E[
∣∣E[X

∣∣ G]∣∣1Ey ]⩽ ∑
y∈Y

|y|E[|X|1Ey ] = E |XY| .

6. Tower property: From the almost sure uniqueness of conditional expectation, it suffices to show that

(a) E[X
∣∣H] is H-measurable,

(b) E[E[X
∣∣H]1H ] = E[E[X

∣∣ G]1H ] for all H ∈H, and

(c) E[
∣∣E[X

∣∣H]
∣∣] is finite.

Part (i) follows from the definition of conditional expectation, which implies that E[X
∣∣H] is H mea-

surable.
Part (ii) follows from the fact that H ⊆ G, and hence any H ∈ H belongs to G. Therefore, from the
definition of conditional expectation, we have

E[E[X
∣∣ G]1H ] = E[X1H ] = E[E[X

∣∣H]1H ].

Part (iii) follows from the conditional Jensen’s inequality applied to convex function || : R → R+ to
get

∣∣E[X
∣∣H]

∣∣⩽ E[|X|
∣∣H], and hence E

∣∣E[X
∣∣H]

∣∣⩽ E |X| < ∞.

7. Irrelevance of independent information: From the almost sure uniqueness of conditional expecta-
tion, it suffices to show that

(i) E[X
∣∣ G] is σ(G,H)-measurable,

(ii) E[E[X
∣∣ G]1A] = E[X1A] for all A ∈ σ(G,H), and

(iii) E
∣∣E[X

∣∣ G]∣∣ is finite.

Part (i) follows from the definition of conditional expectation and the definition of σ(G,H). Since
E[X

∣∣ G] is G-measurable, it is σ(G,H) measurable.
Part (ii) follows from the fact that it suffices to show for events A = G ∩ H ∈ σ(G,H) where G ∈ G and
H ∈H. In this case,

E[E[X
∣∣ G]1G∩H ] = E[E[X

∣∣ G]1G1H ] = E[E[X
∣∣ G]1G]E[1H ] = E[X1G]E[1H ] = E[X1G∩H ].

Part (iii) follows from the conditional Jensen’s inequality applied to convex function || : R → R+ to
get

∣∣E[X
∣∣ G]∣∣⩽ E[|X|

∣∣ G]. This implies that E
∣∣E[X

∣∣ G]∣∣⩽ E |X| < ∞.

8. L2-projection: We define L2(G) ≜
{

ζ a G measurable random variable : Eζ2 < ∞
}

. From the con-
ditional Jensen’s inequality applied to convex function ()2 : R → R+, we get that E(E[X

∣∣ G])2 ⩽
E[X2

∣∣ G]. Since X ∈ L2, it follows that X2 ∈ L1 and hence E[X | G] ∈ L2. It follows that ζ∗ ≜ E[X
∣∣ G] ∈

L2(G) from the definition of conditional expectation.
We first show that X − ζ∗ is uncorrelated with all ζ ∈ L2(G). Towards this end, we let ζ ∈ L2(G) and
observe that

E[(X − ζ∗)ζ] = E[ζX]− E[ζE[X
∣∣ G]] = E[ζX]− E[E[ζX

∣∣ G]] = 0.
The above equality follows from the linearity of expectation, the G-measurability of ζ, and the def-
inition of conditional expectation. Since ζ∗ ∈ L2(G), we have (ζ − ζ∗) ∈ L2(G). Therefore, E[(X −
ζ∗)(ζ − ζ∗)] = 0.
For any ζ ∈ L2(G), we can write from the linearity of expectation

E(X − ζ)2 = E(X − ζ∗)2 + E(ζ − ζ∗)2 − 2E(X − ζ∗)(ζ − ζ∗)⩾ E(X − ζ∗)2.
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3 Convergence theorems for conditional means

Proposition 3.1. Let X : Ω → RN be a random sequence on the probability space (Ω,F, P) such that E |Xn| < ∞
for all n ∈ N. Let G and H be event spaces such that G,H ⊂ F. Then the following theorems hold.

1. Conditional monotone convergence theorem: If 0 ⩽ Xn ⩽ Xn+1 a.s., for all n ∈ N and Xn → X∞ a.s. for
X∞ ∈ L1, then E[Xn

∣∣ G] ↑ E[X∞
∣∣ G] a.s.

2. Conditional Fatou’s lemma: If Xn ⩾ 0 a.s., for all n ∈ N, and liminfn Xn ∈ L1, then E[liminfn Xn
∣∣ G] ⩽

liminfn E[Xn
∣∣ G] a.s.

3. Conditional dominated convergence theorem: If |Xn|⩽ Z for all n ∈ N and some Z ∈ L1, and if Xn → X∞,
a.s., then E[Xn

∣∣ G]→ E[X∞
∣∣ G] a.s. and in L1.

Proof. Let X : Ω → RN be a random sequence on the probability space (Ω,F, P) such that Xn ∈ L1 for all
n ∈ N.

1. Conditional monotone-convergence theorem: By monotonicity, we have E[Xn
∣∣ G] ↑ Y a.s. where

Y : Ω → R+ is G measurable. The monotone convergence theorem implies that, for each A ∈ G,

E[Y1A] = lim
n

E[1AE[Xn
∣∣ G]] = lim

n
E[1AXn] = E[1AX∞].

2. Conditional Fatou’s lemma: Defining Yn ≜ infk⩾n Xk, we get Yn ↑ Y∞ = liminfk Xk. By monotonicity,

E[Yn
∣∣ G]⩽ inf

k⩾n
E[Xk

∣∣ G] a.s. ,

and the conditional monotone-convergence theorem implies that

E[Y∞
∣∣ G] = lim

n∈N
E[Yn

∣∣ G]⩽ liminf
n

E[Xn
∣∣ G] a.s.

3. Conditional dominated-convergence theorem: By the conditional Fatou’s lemma, we have

E[Z + X∞
∣∣ G]⩽ liminf

n
E[Z + Xn

∣∣ G] a.s. , E[Z − X∞
∣∣ G]⩽ liminf

n
E[Z − Xn

∣∣ G] a.s. ,

and the a.s.-statement follows.
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