Lecture-17: Tractable Random Processes

1 Examples of Tractable Stochastic Processes

Recall that a random process X : QO — XT defined on the probability space (Q),F, P) with index set T and
state space X C IR, is completely characterized by its finite dimensional distributions Fx : RS — [0,1] for all
finite S C T, where

Fxs(xs) £ P(Ax,(xs)) = P(NsesX; ' (—00,x]), x5 € RS,
Simpler characterizations of a stochastic process X are in terms of its moments. That is, the first moment
such as mean, and the second moment such as correlations and covariance functions.

mx(t) = EX;, Rx(t,5) 2 EX; X, Cx(t,s) 2 E(X; — mx(t))(Xs — mx(s)).

In general, it is very difficult to characterize a stochastic process completely in terms of its finite dimensional
distribution. However, we have listed few analytically tractable examples below, where we can completely
characterize the stochastic process.

1.1 Independent and identically distributed (i.i.d. ) processes

Definition 1.1 (i.i.d. process). A random process X : ) — X7 is an independent and identically distributed
(i.i.d. ) random process with the common distribution F : R — [0,1], if for any finite S C T and a real vector
x5 € R® we can write the finite dimensional distribution for this process as

FXs<xS) ( SGS{XS <xs} HF xs
seS

Remark 1. It’s easy to verify that the first and the second moments are independent of time indices. That is,
if 0 € T then X; = Xj in distribution, and we have

mx = EXo, Rx(t,s) = (EX§)Lymgy + MLt zs}s Cx(t,s) = Var(Xo)Lj;_g).

1.2 Random Walk

Definition 1.2. Let X : Q — XN be an i.i.d. random sequence defined on the probability space (Q,F, P) and
the state space X = R?. A random sequence S : QO — X%+ is called a random walk with step-size sequence
X,if So£0and S, £ Y " | X; forn € N.

Remark 2. We can think of S, as the random location of a particle after n steps, where the particle starts
from origin and takes steps of size X; at the ith step. From the i.i.d. nature of step-size sequence, we observe
that ES,, = nEX; and Cs(n,m) = (n A m) Var[X].

Remark 3. For the process S : QO — XN it suffices to look at finite dimensional distributions for finite sets
[n] CNN for all n € IN. If the i.i.d. step-size sequence X has a common density function, then from the
transformation of random vectors, we can find the finite dimensional density

fs1,..5, (51,52, -,50) = fxq,...%, (51,52 = 51,...,50 — su—1) det[J(s)] = fx, (s1 I_Ifx1 —5i1).

Theorem 1.3. The stochastic process S : () — Z%* has stationary and independent increments.



Proof. We can look at one increment Sy, — Sy = Y. 1 Xjnti- This increment is a function of sequence
of random variables (X;;11,..., Xmu+r) and hence independent of (Xj,...,X;;). The random variable S,,
depends solely on (Xj, ..., X, ) and hence the independence follows. Stationarity follows from the fact that
the Bernoulli process X is i.i.d. and Sy — Sy is sum of n i.i.d. Bernoulli random variables, and hence has
a Binomial (1, p) distribution identical to that of S,,. O

Corollary 1.4. Let p € N and for each i € [p] let n € NF, k € Zﬁ such that ny < ... <npand ky <... <kp. Then,
we can write the joint mass function

PSnlrmrSnp (kl""’kp) = P(mle[k] {S”i =k; } Hpsn —n;_ k - kl 1)

Proof. The result follows from stationary and independent increment property of the random walk S. [

Remark 4. For a one-dimensional random walk S : Q — ZN with i.i.d. step size sequence X : Q) — {0,1}N
such that P{Xj; =1} = p, the distribution for the random walk at nth step S, is Binomial (n,p). That is,

P{Sy=k} = (’Z) pF(1—p)"*, kefo,...n}.

1.3 Stationary processes

Definition 1.5 (Stationary process). We consider the index set T C R that is closed under addition and
subtraction. A stochastic process X : ) — X is stationary if all finite dimensional distributions are shift
invariant. That is, for any finite S C T and t € T, we have

Fx (x5) = P(Nses { Xs(w) <x5}) = P(Nses { Xs+1(w) < x5}) = Fx, (%)

Remark 5. That is, for any finite n € N and t € R, the random vectors (X;,,...,Xs,) and (Xs,4¢,..., Xs,+¢)
have the identical joint distribution for all s; < ... <sy.

Lemma 1.6. Any i.i.d. process with index set T C R is stationary.

Proof. Let X : Q — X7 be an iid. random process, where T C R. Then, for any finite index subset
S CT,teTand xg € R®, we can write

s(xs) ﬂ {Xs < x:}) :HPOX;l(_OOIXS] :HPOX#S(—oo,xs = ﬂ {Xs <x5}) FXt+5(xS)'
s€S s€S seS s€t+S

Fx.(

First equality follows from the definition, the second from the independence of process X, the third
from the identical distribution for the process X. In particular, we have shown that process X is also
stationary. O

Remark 6. For a stationary stochastic process, all the existing moments are shift invariant when they exist.
Definition 1.7. A second order stochastic process X has finite auto-correlation Rx(t,t) < co forall t € T.

Remark 7. This implies Rx (t1,t;) < oo by Cauchy-Schwartz inequality, and hence the mean, auto-correlation,
and the auto-covariance functions are well defined and finite.

Remark 8. For a stationary process X, we have X; = Xy and (X¢, X;) = (X¢—s, Xo) in distribution. Therefore,
for a second order stationary process X, we have

mx = [EXj, Rx(t,s) IRx(l’*S,O) =EX;_¢Xp, Cx(f*S,O) :Rx(t*S,O) —

Definition 1.8. A random process X is wide sense stationary if



1. mx(t) =mx(t+s) foralls,t € T, and
2. Rx(t,8) = Ry(t+u,s+u) foralls,t,ueT.

Remark 9. It follows that a second order stationary stochastic process X, is wide sense stationary. A second
order wide sense stationary process is not necessarily stationary. We can similarly define joint stationarity
and joint wide sense stationarity for two stochastic processes X and Y.

Example 1.9 (Gaussian process). Let X : QO — RR be a zero-mean continuous-time Gaussian process,
defined by its finite dimensional distributions. In particular, for any finite S C R, column vector x5 € RS,
and the covariance matrix Cs = EXs X!, the finite-dimensional density is given by

1 L or~1
(2m)I81/2 det(cs)eXp< 2%sCs x5>.

Theorem 1.10. A wide sense stationary Gaussian process is stationary.

fxs(xs) =

Proof. For Gaussian random processes, first and the second moment suffice to get any finite dimen-
sional distribution. Let X be a wide sense stationary Gaussian process and let S C R be finite. From the
wide sense stationarity of X, we have EXg = 0 and

EXX, =Cs_y, foralls,ueS.

This means that Cg = C; s, and the result follows.

1.4 Markov processes

Definition 1.11. A stochastic process X is Markov if conditioned on the present state, future is independent
of the past. We denote the history of the process until time t as F; = 0(Xs,s < t). That is, for any ordered
index set T containing any two indices u > t, we have

P({Xy <xu} [ F1) = P({Xy < xu} | 0(X4)).
The range of the process is called the state space.

Remark 10. We next re-write the Markov property more explicitly for the process X. For all x,y € X, finite
set S C T such that max$S < t < u, and Hg = Nges {Xs < x5} € Ft, we have

P({Xu <y} | Hs N {X, <x}) = P{X, <y} | {X: < x}).

Remark 11. When the state space X is countable, we can write Hg = Ngeg { Xs = x5 } and the Markov property
can be written as
P{Xu=y} | Hs N{X; =x}) = P({Xu = xu} | {X; = x}).

Remark 12. In addition, when the index set is countable, i.e. T = Z,, then we can take past as S =
{0,...,n =1}, present as instant 1, and the future as n 4+ 1. Then, the Markov property can be written
as

P({Xp+1 =y} | Hi-1 N {Xn = x}) = P({ X1 =y} [ {Xn = x}),
forallne Z,,x,y € X.

We will study this process in detail in coming lectures.

Example 1.12. A random walk S: Q) — X%+ with i.i.d. step-size sequence X : ) — XN, is a homogeneous
Markov sequence. For any n € Z and x,y,51,...,5,—1 € X, we can write the conditional probability

P({Su+1 =y} {Sn =%,54-1=5p-1,-..,51 =51}) = P({Sp1 — Sn =y — x}) = P({Su1 =y} | {Sn = x}).



Lemma 1.13. The stochastic process S : Q) — ZJZr+ is homogeneously Markov.

Proof. Since the process has stationary and independent increments, we have
P({Spnym =k} |{S1=k1,S2=kz,...,54 =kn}) =P({Sntm — Sn =k —ku}) = P({Sn4m =k} | {Sn =kn}).

O

1.5 Lévy processes

A right continuous with left limits stochastic process X : O — R for index set T C R with Xy = 0 almost
surely, is a Lévy process if the following conditions hold.

(L1) The increments are independent. For any instants 0 <t <t < --- < t; < oo, the random variables
Xy, — Xy, Xty — Xiy,..., Xt, — X, , are independent.

(L2) The increments are stationary. For any instants 0 < t; < t, < --- < t; < o0 and time-difference s > 0,
the random vectors (X, — X¢,, Xt; — Xy, .-, Xp, — Xp, ;) and (Xsqt, — Xoty, Xotty — Xstyr oo KXoty —
Xs+t, ,) are equal in distribution.

(L3) Continuous in probability. For any € > 0 and ¢ > 0 it holds that lim,_,o P({|X;, — X¢| > €}) =0.

Example 1.14. Two examples of Lévy processes are Poisson process and Wiener process. The distribu-
tion of Poisson process at time t is Poisson with rate At and the distribution of Wiener process at time ¢
is zero mean Gaussian with variance ¢.

Example 1.15. A random walk S: Q — XZ+ with i.i.d. step-size sequence X : Q — XN, is non-stationary
with stationary and independent increments. To see non-stationarity, we observe that the mean
mg(n) = nEX; depends on the step of the random walk. We have already seen the increment pro-
cess of random walks.



