
Lecture-17: Tractable Random Processes

1 Examples of Tractable Stochastic Processes

Recall that a random process X : Ω → XT defined on the probability space (Ω,F, P) with index set T and
state space X⊆ R, is completely characterized by its finite dimensional distributions FXS : RS → [0,1] for all
finite S ⊆ T, where

FXS(xS)≜ P(AXS(xS)) = P(∩s∈SX−1
s (−∞, xs]), xS ∈ RS.

Simpler characterizations of a stochastic process X are in terms of its moments. That is, the first moment
such as mean, and the second moment such as correlations and covariance functions.

mX(t)≜ EXt, RX(t, s)≜ EXtXs, CX(t, s)≜ E(Xt − mX(t))(Xs − mX(s)).

In general, it is very difficult to characterize a stochastic process completely in terms of its finite dimensional
distribution. However, we have listed few analytically tractable examples below, where we can completely
characterize the stochastic process.

1.1 Independent and identically distributed (i.i.d. ) processes

Definition 1.1 (i.i.d. process). A random process X : Ω →XT is an independent and identically distributed
(i.i.d. ) random process with the common distribution F : R → [0,1], if for any finite S ⊆ T and a real vector
xS ∈ RS we can write the finite dimensional distribution for this process as

FXS(xS) = P (∩s∈S {Xs(ω)⩽ xs}) = ∏
s∈S

F(xs).

Remark 1. It’s easy to verify that the first and the second moments are independent of time indices. That is,
if 0 ∈ T then Xt = X0 in distribution, and we have

mX = EX0, RX(t, s) = (EX2
0)1{t=s} + m2

X1{t ̸=s}, CX(t, s) = Var(X0)1{t=s}.

1.2 Random Walk

Definition 1.2. Let X : Ω → XN be an i.i.d. random sequence defined on the probability space (Ω,F, P) and
the state space X= Rd. A random sequence S : Ω → XZ+ is called a random walk with step-size sequence
X, if S0 ≜ 0 and Sn ≜ ∑n

i=1 Xi for n ∈ N.

Remark 2. We can think of Sn as the random location of a particle after n steps, where the particle starts
from origin and takes steps of size Xi at the ith step. From the i.i.d. nature of step-size sequence, we observe
that ESn = nEX1 and CS(n,m) = (n ∧ m)Var[X1].

Remark 3. For the process S : Ω → XN it suffices to look at finite dimensional distributions for finite sets
[n] ⊆ N for all n ∈ N. If the i.i.d. step-size sequence X has a common density function, then from the
transformation of random vectors, we can find the finite dimensional density

fS1,...,Sn(s1, s2, . . . , sn) = fX1,...,Xn(s1, s2 − s1, . . . , sn − sn−1)det[J(s)] = fX1(s1)
n

∏
i=2

fX1(si − si−1).

Theorem 1.3. The stochastic process S : Ω → Z
Z+
+ has stationary and independent increments.
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Proof. We can look at one increment Sm+n − Sm = ∑n
i=1 Xm+i. This increment is a function of sequence

of random variables (Xm+1, . . . , Xm+n) and hence independent of (X1, . . . , Xm). The random variable Sm
depends solely on (X1, . . . , Xm) and hence the independence follows. Stationarity follows from the fact that
the Bernoulli process X is i.i.d. and Sm+n − Sm is sum of n i.i.d. Bernoulli random variables, and hence has
a Binomial (n, p) distribution identical to that of Sn.

Corollary 1.4. Let p ∈ N and for each i ∈ [p] let n ∈ Np,k ∈ Z
p
+ such that n1 ⩽ . . . ⩽ np and k1 ⩽ . . . ⩽ kp. Then,

we can write the joint mass function

PSn1 ,...,Snp
(k1, . . . ,kp) = P(∩i∈[k] {Sni = ki}) =

p

∏
i=1

PSni−ni−1
(ki − ki−1).

Proof. The result follows from stationary and independent increment property of the random walk S.

Remark 4. For a one-dimensional random walk S : Ω → ZN
+ with i.i.d. step size sequence X : Ω → {0,1}N

such that P{X1 = 1} = p, the distribution for the random walk at nth step Sn is Binomial (n, p). That is,

P{Sn = k} =
(

n
k

)
pk(1 − p)n−k, k ∈ {0, . . . ,n} .

1.3 Stationary processes

Definition 1.5 (Stationary process). We consider the index set T ⊆ R that is closed under addition and
subtraction. A stochastic process X : Ω → XT is stationary if all finite dimensional distributions are shift
invariant. That is, for any finite S ⊆ T and t ∈ T, we have

FXS(xS) = P(∩s∈S {Xs(ω)⩽ xs}) = P(∩s∈S {Xs+t(ω)⩽ xs}) = FXt+S(xS).

Remark 5. That is, for any finite n ∈ N and t ∈ R, the random vectors (Xs1 , . . . , Xsn) and (Xs1+t, . . . , Xs1+t)
have the identical joint distribution for all s1 ⩽ . . . ⩽ sn.

Lemma 1.6. Any i.i.d. process with index set T ⊆ R is stationary.

Proof. Let X : Ω → XT be an i.i.d. random process, where T ⊆ R. Then, for any finite index subset
S ⊆ T, t ∈ T and xS ∈ RS, we can write

FXS(xS) = P(
⋂
s∈S

{Xs ⩽ xs}) =∏
s∈S

P ◦X−1
s (−∞, xs] =∏

s∈S
P ◦X−1

t+s(−∞, xs] = P(
⋂

s∈t+S
{Xs ⩽ xs}) = FXt+S(xS).

First equality follows from the definition, the second from the independence of process X, the third
from the identical distribution for the process X. In particular, we have shown that process X is also
stationary.

Remark 6. For a stationary stochastic process, all the existing moments are shift invariant when they exist.

Definition 1.7. A second order stochastic process X has finite auto-correlation RX(t, t) < ∞ for all t ∈ T.

Remark 7. This implies RX(t1, t2)<∞ by Cauchy-Schwartz inequality, and hence the mean, auto-correlation,
and the auto-covariance functions are well defined and finite.

Remark 8. For a stationary process X, we have Xt = X0 and (Xt, Xs) = (Xt−s, X0) in distribution. Therefore,
for a second order stationary process X, we have

mX = EX0, RX(t, s) = RX(t − s,0) = EXt−sX0, CX(t − s,0) = RX(t − s,0)− m2
X .

Definition 1.8. A random process X is wide sense stationary if
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1. mX(t) = mX(t + s) for all s, t ∈ T, and

2. RX(t, s) = Rx(t + u, s + u) for all s, t,u ∈ T.

Remark 9. It follows that a second order stationary stochastic process X, is wide sense stationary. A second
order wide sense stationary process is not necessarily stationary. We can similarly define joint stationarity
and joint wide sense stationarity for two stochastic processes X and Y.

Example 1.9 (Gaussian process). Let X : Ω → RR be a zero-mean continuous-time Gaussian process,
defined by its finite dimensional distributions. In particular, for any finite S⊂R, column vector xS ∈RS,
and the covariance matrix CS ≜ EXSXT

S , the finite-dimensional density is given by

fXS(xS) =
1

(2π)|S|/2
√

det(CS)
exp

(
−1

2
xT

S C−1
S xS

)
.

Theorem 1.10. A wide sense stationary Gaussian process is stationary.

Proof. For Gaussian random processes, first and the second moment suffice to get any finite dimen-
sional distribution. Let X be a wide sense stationary Gaussian process and let S ⊆ R be finite. From the
wide sense stationarity of X, we have EXS = 0 and

EXsXu = Cs−u, for all s,u ∈ S.

This means that CS = Ct+S, and the result follows.

1.4 Markov processes

Definition 1.11. A stochastic process X is Markov if conditioned on the present state, future is independent
of the past. We denote the history of the process until time t as Ft = σ(Xs, s ⩽ t). That is, for any ordered
index set T containing any two indices u > t, we have

P({Xu ⩽ xu} | Ft) = P({Xu ⩽ xu} | σ(Xt)).

The range of the process is called the state space.

Remark 10. We next re-write the Markov property more explicitly for the process X. For all x,y ∈ X, finite
set S ⊆ T such that maxS < t < u, and HS = ∩s∈S {Xs ⩽ xs} ∈ Ft, we have

P({Xu ⩽ y} | HS ∩ {Xt ⩽ x}) = P({Xu ⩽ y} | {Xt ⩽ x}).

Remark 11. When the state space X is countable, we can write HS =∩s∈S {Xs = xs} and the Markov property
can be written as

P({Xu = y} | HS ∩ {Xt = x}) = P({Xu = xu} | {Xt = x}).
Remark 12. In addition, when the index set is countable, i.e. T = Z+, then we can take past as S =
{0, . . . ,n − 1}, present as instant n, and the future as n + 1. Then, the Markov property can be written
as

P({Xn+1 = y} | Hn−1 ∩ {Xn = x}) = P({Xn+1 = y} | {Xn = x}),
for all n ∈ Z+, x,y ∈ X.

We will study this process in detail in coming lectures.

Example 1.12. A random walk S : Ω →XZ+ with i.i.d. step-size sequence X : Ω →XN, is a homogeneous
Markov sequence. For any n ∈ Z+ and x,y, s1, . . . , sn−1 ∈ X, we can write the conditional probability

P({Sn+1 = y} | {Sn = x,Sn−1 = sn−1, . . . ,S1 = s1}) = P({Sn+1 − Sn = y − x}) = P({Sn+1 = y} | {Sn = x}).

3



Lemma 1.13. The stochastic process S : Ω → Z
Z+
+ is homogeneously Markov.

Proof. Since the process has stationary and independent increments, we have

P({Sn+m = k} | {S1 = k1,S2 = k2, . . . ,Sn = kn}) = P({Sn+m − Sn = k − kn}) = P({Sn+m = k} | {Sn = kn}).

1.5 Lévy processes

A right continuous with left limits stochastic process X : Ω → RT for index set T ⊆ R+ with X0 = 0 almost
surely, is a Lévy process if the following conditions hold.

(L1) The increments are independent. For any instants 0 ⩽ t1 < t2 < · · · < tn < ∞, the random variables
Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtn − Xtn−1 are independent.

(L2) The increments are stationary. For any instants 0 ⩽ t1 < t2 < · · · < tn < ∞ and time-difference s > 0,
the random vectors (Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtn − Xtn−1) and (Xs+t2 − Xs+t1 , Xs+t3 − Xs+t2 , . . . , Xs+tn −
Xs+tn−1) are equal in distribution.

(L3) Continuous in probability. For any ϵ > 0 and t ⩾ 0 it holds that limh→0 P({|Xt+h − Xt| > ϵ}) = 0.

Example 1.14. Two examples of Lévy processes are Poisson process and Wiener process. The distribu-
tion of Poisson process at time t is Poisson with rate λt and the distribution of Wiener process at time t
is zero mean Gaussian with variance t.

Example 1.15. A random walk S : Ω →XZ+ with i.i.d. step-size sequence X : Ω →XN, is non-stationary
with stationary and independent increments. To see non-stationarity, we observe that the mean
mS(n) = nEX1 depends on the step of the random walk. We have already seen the increment pro-
cess of random walks.
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