Lecture-19: Discrete Time Markov Chains

1 Markovity for countable state sequences

We have seen that i.i.d. sequences are easiest discrete time random processes. However, they don’t capture
correlation well.

Definition 1.1. For a state space X C R and the random sequence X : QO — X%+, we define the history until
timen e Z; as F, =0(Xy,..., Xn).
Remark 1. Recall that the event space F), is generated by the historical events of the form

Ax(x) =N {X; < x;}, where x € R".

Remark 2. When the state space X is countable, the event space F, is generated by the historical events of
the form
Hu(x) =N, {X;=x;}, where x € X".

Definition 1.2 (DTMC). For a countable set X, a discrete-valued random sequence X : Q — X%+ is called a

discrete time Markov chain (DTMCQ) if for all positive integers n € Z 1, all states x,y € X, and any historical

event H, 1 = N1 {Xy = xm} € Fy for (x,...,x,_1) € X", the process X satisfies the Markov property

P({Xn—H =y} ‘ Hy 1 N{Xy=x}) = P({Xn+1 =y} | {Xn= x})

Remark 3. The above definition is equivalent to P({X, 11 < x} | F;) = P({Xy11 < x} | 0(X,1)), for discrete
time discrete state space Markov chain, since F, = 0(Hy(x) : x € X"") and 0(X,,) = c({ X,y = x},x € X).

2 Transition probability matrix

Definition 2.1. We denote the set of all probability mass functions over a countable state space X by
M(X) £ {ve0,1]*: Tyeqve =1}.

Definition 2.2. The transition probability matrix at time 1 is denoted by P(n) € [0,1]**%, such that
Pyy(n) = pxy(n) is the transition probability of a discrete time Markov chain X being in state y € X at
time 1 + 1 from a state x € X at time 7, denoted by px,(n) £ P({X,41 =y} | {Xa =x}).

Remark 4. We observe that each row Py(1n) = (pxy(n) : y € X) € M(X) is the conditional distribution of X, |1
given the event {X,, = x}.

Example 2.3 (Random Walk). A random walk S : Q — XN with independent step-size sequence X :
Q — XN, is a Markov sequence for countable state space X. For the countable state space X, an given the

historical event H, 1(s) = ﬂ,’(‘;ll {Sk = s¢} and the current state {S,, = s, }, we can write the conditional
probability
P({Sns1=sns1} | Hn-1(s) N {Sn = sn}) = P({Xp+1 = $us1 = Su} | Huo1(5) N {Sn =51})
=P({Sn+1="5n41} ‘ {Sn=su}) =P{Xys1="5n41—n}-

The equality in the second line follows from the independence of the step-size sequence. In particular,
from the independence of X,,.1 from the collection (Sg, X1, ..., Xn) = 0(S0,51,--,5n).



Definition 2.4. A matrix A € ]Rf *X with non-negative entries is called sub-stochastic if the row-sum
Yyexdxy < 1 for all rows x € X. If the above property holds with equality for all rows, then it is called

a stochastic matrix. If matrices A and AT are both stochastic, then the matrix A is called doubly stochastic.
Remark 5. We make the following observations for the stochastic matrices.
i- Every probability transition matrix P(n) is a stochastic matrix.
ii_ All the entries of a sub-stochastic matrix lie in [0,1].
iii_ Each row Ay £ (ay, :y € X) of the stochastic matrix A € R} ** belongs to M (X).

iv_ Every finite stochastic matrix has a right eigenvector with unit eigenvalue. This can be observed by
taking 17 = [1 ... 1] to be an all-one vector of length |X|. Then we see that A1 = 1, since

Al)y = Ay 1, = ayy = 14, for each x € X.
yly y
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v_ Every finite doubly stochastic matrix has a left and right eigenvector with unit eigenvalue. This follows
from the fact that finite stochastic matrices A and AT have a common right eigenvector 1. It follows
that A has a left eigenvector 17.

vi- For a probability transition matrix P(1), we have ¥ cx f () pay () = E[f(Xn 1) | X = x].

3 Homogeneous Markov chains

In general, not much can be said about Markov chains with index dependent transition probabilities.
Hence, we consider the simpler case where the transition probabilities py, (1) = px, are independent of
the index.

Definition 3.1. A discrete time Markov chain with the probability transition matrix P(n) that is indepen-
dent of the index, is called time homogeneous.

Example 3.2 (Integer random walk). For a one-dimensional integer valued random walk S : Q — ZN
with i.i.d. unit step size sequence X : Q0 — {—1,1} such that P{X; = 1} = p, the transition operator
P € [0,1]2*Z is given by the entries py, = Plyy—xs1y + (1 = p)ly—y_q) forallx,y € Z.

Example 3.3 (Sequence of experiments). Consider a random sequence of experiment outcomes X :
Q— {0,1}%, such that P({X,,11 =0} | {X, =0}) =1—gand P({X,,11 =1} | {X, =1}) =1—pforall
n € Z. Then, we can write the probability transition matrix as

1—gq q}
P = .
.

Definition 3.4. Consider a time homogeneous Markov chain X : Q) — X%+ with countable state space X and
transition matrix P. We would respectively denote the conditional probability of events and conditional
expectation of random variables, conditioned on the initial state { Xp = x}, by

P(A)£P(A| {Xo=1x}), E[Y]2E[Y | {Xo=x}].

3.1 Transition graph

A time homogeneous Markov chain X : O — XN with a probability transition matrix P, is sometimes repre-
sented by a directed weighted graph G = (X, E,w), where the set of nodes in the graph G is the state space



X, and the set of directed edges is the set of possible one-step transitions indicated by the initial and the

final state, as
E£{[xy) EXXX:py >0}.

In addition, this graph has a weight w, = py, on each edge e = [x,y) € E.

Example 3.5 (Integer random walk). The time homogeneous Markov chain in Example can be
represented by an infinite state weighted graph G = (Z,E, w), where the edge set is

E={(nn+1):necZ}U{(n,n—-1):necZ}.

We have plotted the sub-graph of the entire transition graph for states {—1,0,1} in Figure

Figure 1: Sub-graph of the entire transition graph for an integer random walk with i.i.d. step-sizesin {—1,1}
with probability p for the positive step.

Example 3.6 (Sequence of experiments). The time homogeneous Markov chain in Example 3.3|can be
represented by the following two-state weighted transition graph G = ({0,1},E,w), plotted in Figure

p

Figure 2: Markov chain for the sequence of experiments with two outcomes.

4 n-step transition

Definition 4.1. For a time homogeneous Markov chain X : Q) — X%+ we denote the probability mass func-
tion of Markov chain at step n by 7, € M(X).

Proposition 4.2. Conditioned on the initial state, any finite dimensional distribution of a homogeneous Markov
chain is stationary. That is, for any finite n,m € Z . and states xo,...,x, € X, we have

PNy {Xi = xi} | {Xo=x0}) = P(NZy {Xpnri = xi} | {Xim = x0}) _ﬁpxilxi'

Proof. To this end, we compute the transition probabilities for the path (xy,...,x,) taken by
(i) the sample path (Xj,...,X,) given the event { Xy = xp} and



(ii) by the sample path (Xy,11,..., Xm+n) given the event {X,, = xo}.
For each i € {0,...,n}, we can define events H; = m;::o {X]- = xj}. We observe that H; = {X; =x;} N H;_1

and H; € F; = 0(Xy,...,X;) for all i € N. From the definition of event H,,_; and the conditional probability,
we can write
Px,(Hp) = Px,({Xn = xn} N Hy—1) = P({Xpn = xn} ’ Hy—1)Pxy(Hy-1).

Using the fact that H,,_1 = {X,,—1 = x,_1} N H,_», and the Markovity and homogeneity of the process X,
we obtain
P({Xn = xn} ’ Hn—l) = P({Xn = xn} | {Xn—l = xn—l} N Hn72) = Px,_1x,-

Inductively, we can write the conditional joint distribution of H, given the event {Xy = xo} as
Pyy(Hn) = Pxoxy -+ P10
Similarly, we can write for the sample path (X,;11,..., Xiutx) given Xy, = xo,

n
P({Xm+1 =X1,.0, Xingn = xn} ‘ {Xm = xO}) = HP({Xm+i = xi)} | {Xmﬂ?l = xifl}) = Pxox1 -+ Pxy_1xn-
i—1

1

O

Corollary 4.3. The n-step transition probabilities are stationary for any homogeneous Markov chain. That is, for any
states xg,x, € X and n,m € IN, we have

P({Xontm = xn} [{Xim = x0}) = P({Xn = 2} [ { X0 = x0})-

Proof. Tt follows from summing over intermediate steps. Let x = (x1,...,%,_1) € X"~!, then we can partition
the event {X, = x,} in terms of disjoint events {H,_1(x) N {X =x,}):x € X"~} defined by H,_;(x) £
ﬁf;ll {X; = x;}, and partition the event { X+ = x, } in terms of the disjoint events { F,_1(x) N {Xpns+n = x5 }) : x € X" 71}
defined by F, 1(x) £ ﬂ?;ll {Xu+i = x;}. Then, we can write
{Xn = xn} = Uxexnlenfl (x) N {Xn = xn}/ {Xern = xn} = Uxexnlenfl(x) N {Xern = xn} .

From the stationarity in joint distribution conditioned on initial state for the homogeneous Markov chain
X, we have

P(Fy—1(x) N {Xmtn = xu} | {Xm = x0}) = P(Hy—1(x) N {Xy = xn} | {Xo=1x0}).
Using the law of total probability, we can write the conditional probability

Py {Xn=xn}= Y. Pyy(Hy1(x) N {Xp=1x}),

xexn-1
P({Xmsn =xn} [ {Xm =x0}) = 2 P(Fy—1(x) N {Ximtn = xn} [ {Xm = x0}).
xeXn-1
The result follows since each term in the summation is equal. O

Definition 4.4. For a time homogeneous Markov chain X : Q — X%+, we can define n-step transition
probability matrix P("), with its (x,y) entry being the n-step transition probability for X, to be in state

y given the event {X,,, = x}. That is, p,(f;) £ P({Xpsm =y} |{Xm =x}) forall x,y € X and m,n € Z.

Remark 6. That is, the row P,E") = (p%) 1y € X) € M(X) is the conditional distribution of X, given the initial
state {Xp = x}.



Example 4.5 (Sequence of experiments). Consider the time homogeneous Markov chain X : Q — ZZ+
introduced in Example We denote the conditional distribution of X, given {Xy =0} by v,,41, and
the conditional distribution of X, 1 given {Xo =1} by p;,11. That s,

vn = [Po({Xn =0}) Po({Xu=1})],

= [P({Xu =0}) P({Xn=1})].

Let 71g be the initial distribution on the experiment outcome, and 7, be the distribution of the experi-
ment outcome at time n. Then, we can write

7a(0) £ P{Xy = 0} = Po({Xn = 0})710(0) + P1({Xn = 0})710(1) = v (0)710(0) + p (0) o (1)

Similarly, we can write 77, (1) = v,,(1)719(0) + pn(1)71o(1). That is, we can write

2 1m0 0] = o) o) 1) o] =]

That is to compute the unconditional distribution of X, given initial distribution 77y, we need to com-
pute conditional distributions v, and y,,. We can see that

v=[1-p p], n=[1-p2+pg A-pp+p1-q)],
p=1[q 1-gq], w=g1-p)+0-qq Q—-q9)*+qp].

This method of direct computation can quickly become too cumbersome.

Theorem 4.6. The n-step transition probabilities for a homogeneous Markov chain form a semi-group. That is, for
all positive integers m,n € Z.1.
plm+n) _ p(m)p(n)

Proof. The events {{X;;, =z} :z € X} partition the sample space (), and hence we can express the event
{Xm+n =y} as the following disjoint union

{Xmin =y} = Uzex {Xmsn =y, Xon = 2}
It follows from the Markov property and law of total probability that for any states x,y and positive integers
m,n

p’(‘1;1+n) = Z Px({X”+m =Y, Xm = Z}) = Z P({Xner =Yy | Xm=2,Xo= x})Px({Xm :z})

zeX zeX
= 2 P{Xuim =y | Xn=2))Pe{Xn =2}) = L pitply) = (PP0)s,
zeX zeX
Since the choice of states x,y € X were arbitrary, the result follows. O

Corollary 4.7. The n-step transition probability matrix is given by PU") = P" for any positive integer n.

Proof. In particular, we have P("*1) = p(1)p(1) = p() p(")_Gince P(1) = P, we have P(") = P" by induction.
O

Remark 7. That is, for all states x,y and non-negative integers n € Z, pg) = Py

5 Chapman Kolmogorov equations

We denote by p € RY the initial distribution of the Markov chain, that is 779(x) = P{Xy = x}. The distri-
bution of X,, is given by 7, € RY, such that for any state x € X.

Tu(x) =P{Xp=x} =) pgz)no(z) = (71gP")y.
zeX



We can write this succinctly in terms of transition probability matrix P as u, = poP". We can alternatively
derive this result by the following Lemma.

Lemma 5.1. The right multiplication of a probability vector with the transition matrix P transforms the probability
distribution of current state to probability distribution of the next state. That is,

Ttyt1 = 7, P, foralln € IN.

Proof. To see this, we fix y € X and from the law of total probability and the definition conditional proba-
bility, we observe that

Tuy1(y) = P{Xy1 =y} = Z P{Xp1=y,Xn=x}= Z P{X, =x} Pxy = (”nP)y-
xeX xeX



	Markovity for countable state sequences
	Transition probability matrix
	Homogeneous Markov chains
	Transition graph

	n-step transition
	Chapman Kolmogorov equations

