

# Lecture-19: Discrete Time Markov Chains

## 1 Markovity for countable state sequences

We have seen that *i.i.d.* sequences are easiest discrete time random processes. However, they don't capture correlation well.

**Definition 1.1.** For a state space  $\mathcal{X} \subseteq \mathbb{R}$  and the random sequence  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}^+}$ , we define the history until time  $n \in \mathbb{Z}_+$  as  $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ .

*Remark 1.* Recall that the event space  $\mathcal{F}_n$  is generated by the historical events of the form

$$A_X(x) = \bigcap_{i=1}^n \{X_i \leq x_i\}, \text{ where } x \in \mathbb{R}^n.$$

*Remark 2.* When the state space  $\mathcal{X}$  is countable, the event space  $\mathcal{F}_n$  is generated by the historical events of the form

$$H_n(x) = \bigcap_{i=1}^n \{X_i = x_i\}, \text{ where } x \in \mathcal{X}^n.$$

**Definition 1.2 (DTMC).** For a countable set  $\mathcal{X}$ , a discrete-valued random sequence  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}^+}$  is called a **discrete time Markov chain (DTMC)** if for all positive integers  $n \in \mathbb{Z}_+$ , all states  $x, y \in \mathcal{X}$ , and any historical event  $H_{n-1} = \bigcap_{m=0}^{n-1} \{X_m = x_m\} \in \mathcal{F}_n$  for  $(x_0, \dots, x_{n-1}) \in \mathcal{X}^n$ , the process  $X$  satisfies the Markov property

$$P(\{X_{n+1} = y\} \mid H_{n-1} \cap \{X_n = x\}) = P(\{X_{n+1} = y\} \mid \{X_n = x\}).$$

*Remark 3.* The above definition is equivalent to  $P(\{X_{n+1} \leq x\} \mid \mathcal{F}_n) = P(\{X_{n+1} \leq x\} \mid \sigma(X_n))$ , for discrete time discrete state space Markov chain, since  $\mathcal{F}_n = \sigma(H_n(x) : x \in \mathcal{X}^n)$  and  $\sigma(X_n) = \sigma(\{X_n = x\}, x \in \mathcal{X})$ .

## 2 Transition probability matrix

**Definition 2.1.** We denote the set of all probability mass functions over a countable state space  $\mathcal{X}$  by  $\mathcal{M}(\mathcal{X}) \triangleq \{\nu \in [0,1]^{\mathcal{X}} : \sum_{x \in \mathcal{X}} \nu_x = 1\}$ .

**Definition 2.2.** The **transition probability matrix** at time  $n$  is denoted by  $P(n) \in [0,1]^{\mathcal{X} \times \mathcal{X}}$ , such that  $P_{xy}(n) = p_{xy}(n)$  is the **transition probability** of a discrete time Markov chain  $X$  being in state  $y \in \mathcal{X}$  at time  $n+1$  from a state  $x \in \mathcal{X}$  at time  $n$ , denoted by  $p_{xy}(n) \triangleq P(\{X_{n+1} = y\} \mid \{X_n = x\})$ .

*Remark 4.* We observe that each row  $P_x(n) = (p_{xy}(n) : y \in \mathcal{X}) \in \mathcal{M}(\mathcal{X})$  is the conditional distribution of  $X_{n+1}$  given the event  $\{X_n = x\}$ .

**Example 2.3 (Random Walk).** A random walk  $S : \Omega \rightarrow \mathcal{X}^{\mathbb{N}}$  with independent step-size sequence  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{N}}$ , is a Markov sequence for countable state space  $\mathcal{X}$ . For the countable state space  $\mathcal{X}$ , an given the historical event  $H_{n-1}(s) \triangleq \bigcap_{k=1}^{n-1} \{S_k = s_k\}$  and the current state  $\{S_n = s_n\}$ , we can write the conditional probability

$$\begin{aligned} P(\{S_{n+1} = s_{n+1}\} \mid H_{n-1}(s) \cap \{S_n = s_n\}) &= P(\{X_{n+1} = s_{n+1} - s_n\} \mid H_{n-1}(s) \cap \{S_n = s_n\}) \\ &= P(\{S_{n+1} = s_{n+1}\} \mid \{S_n = s_n\}) = P\{X_{n+1} = s_{n+1} - s_n\}. \end{aligned}$$

The equality in the second line follows from the independence of the step-size sequence. In particular, from the independence of  $X_{n+1}$  from the collection  $\sigma(S_0, X_1, \dots, X_n) = \sigma(S_0, S_1, \dots, S_n)$ .

**Definition 2.4.** A matrix  $A \in \mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$  with non-negative entries is called **sub-stochastic** if the row-sum  $\sum_{y \in \mathcal{X}} a_{xy} \leq 1$  for all rows  $x \in \mathcal{X}$ . If the above property holds with equality for all rows, then it is called a **stochastic** matrix. If matrices  $A$  and  $A^T$  are both stochastic, then the matrix  $A$  is called **doubly stochastic**.

*Remark 5.* We make the following observations for the stochastic matrices.

- i. Every probability transition matrix  $P(n)$  is a stochastic matrix.
- ii. All the entries of a sub-stochastic matrix lie in  $[0,1]$ .
- iii. Each row  $A_x \triangleq (a_{xy} : y \in \mathcal{X})$  of the stochastic matrix  $A \in \mathbb{R}_+^{\mathcal{X} \times \mathcal{X}}$  belongs to  $\mathcal{M}(\mathcal{X})$ .
- iv. Every finite stochastic matrix has a right eigenvector with unit eigenvalue. This can be observed by taking  $\mathbf{1}^T = [1 \dots 1]$  to be an all-one vector of length  $|\mathcal{X}|$ . Then we see that  $A\mathbf{1} = \mathbf{1}$ , since

$$(A\mathbf{1})_x = \sum_{y \in \mathcal{X}} a_{xy} \mathbf{1}_y = \sum_{y \in \mathcal{X}} a_{xy} = \mathbf{1}_x, \text{ for each } x \in \mathcal{X}.$$

- v. Every finite doubly stochastic matrix has a left and right eigenvector with unit eigenvalue. This follows from the fact that finite stochastic matrices  $A$  and  $A^T$  have a common right eigenvector  $\mathbf{1}$ . It follows that  $A$  has a left eigenvector  $\mathbf{1}^T$ .
- vi. For a probability transition matrix  $P(n)$ , we have  $\sum_{y \in \mathcal{X}} f(y) p_{xy}(n) = \mathbb{E}[f(X_{n+1}) \mid X_n = x]$ .

### 3 Homogeneous Markov chains

In general, not much can be said about Markov chains with index dependent transition probabilities. Hence, we consider the simpler case where the transition probabilities  $p_{xy}(n) = p_{xy}$  are independent of the index.

**Definition 3.1.** A discrete time Markov chain with the probability transition matrix  $P(n)$  that is independent of the index, is called **time homogeneous**.

**Example 3.2 (Integer random walk).** For a one-dimensional integer valued random walk  $S : \Omega \rightarrow \mathbb{Z}^{\mathbb{N}}$  with *i.i.d.* unit step size sequence  $X : \Omega \rightarrow \{-1, 1\}^{\mathbb{N}}$  such that  $P\{X_1 = 1\} = p$ , the transition operator  $P \in [0, 1]^{\mathbb{Z} \times \mathbb{Z}}$  is given by the entries  $p_{xy} = p 1_{\{y=x+1\}} + (1-p) 1_{\{y=x-1\}}$  for all  $x, y \in \mathbb{Z}$ .

**Example 3.3 (Sequence of experiments).** Consider a random sequence of experiment outcomes  $X : \Omega \rightarrow \{0, 1\}_+^{\mathbb{Z}}$ , such that  $P(\{X_{n+1} = 0\} \mid \{X_n = 0\}) = 1 - q$  and  $P(\{X_{n+1} = 1\} \mid \{X_n = 1\}) = 1 - p$  for all  $n \in \mathbb{Z}_+$ . Then, we can write the probability transition matrix as

$$P = \begin{bmatrix} 1 - q & q \\ p & 1 - p \end{bmatrix}.$$

**Definition 3.4.** Consider a time homogeneous Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$  with countable state space  $\mathcal{X}$  and transition matrix  $P$ . We would respectively denote the conditional probability of events and conditional expectation of random variables, conditioned on the initial state  $\{X_0 = x\}$ , by

$$P_x(A) \triangleq P(A \mid \{X_0 = x\}), \quad \mathbb{E}_x[Y] \triangleq \mathbb{E}[Y \mid \{X_0 = x\}].$$

#### 3.1 Transition graph

A time homogeneous Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{N}}$  with a probability transition matrix  $P$ , is sometimes represented by a directed weighted graph  $G = (\mathcal{X}, E, w)$ , where the set of nodes in the graph  $G$  is the state space

$\mathcal{X}$ , and the set of directed edges is the set of possible one-step transitions indicated by the initial and the final state, as

$$E \triangleq \{[x,y] \in \mathcal{X} \times \mathcal{X} : p_{xy} > 0\}.$$

In addition, this graph has a weight  $w_e = p_{xy}$  on each edge  $e = [x,y] \in E$ .

**Example 3.5 (Integer random walk).** The time homogeneous Markov chain in Example 3.2 can be represented by an infinite state weighted graph  $G = (\mathbb{Z}, E, w)$ , where the edge set is

$$E = \{(n, n+1) : n \in \mathbb{Z}\} \cup \{(n, n-1) : n \in \mathbb{Z}\}.$$

We have plotted the sub-graph of the entire transition graph for states  $\{-1, 0, 1\}$  in Figure 1.

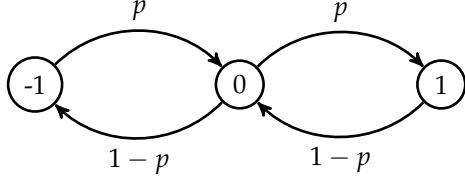


Figure 1: Sub-graph of the entire transition graph for an integer random walk with *i.i.d.* step-sizes in  $\{-1, 1\}$  with probability  $p$  for the positive step.

**Example 3.6 (Sequence of experiments).** The time homogeneous Markov chain in Example 3.3 can be represented by the following two-state weighted transition graph  $G = (\{0, 1\}, E, w)$ , plotted in Figure 2.

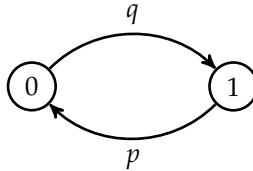


Figure 2: Markov chain for the sequence of experiments with two outcomes.

## 4 $n$ -step transition

**Definition 4.1.** For a time homogeneous Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}^+}$  we denote the probability mass function of Markov chain at step  $n$  by  $\pi_n \in \mathcal{M}(\mathcal{X})$ .

**Proposition 4.2.** *Conditioned on the initial state, any finite dimensional distribution of a homogeneous Markov chain is stationary. That is, for any finite  $n, m \in \mathbb{Z}_+$  and states  $x_0, \dots, x_n \in \mathcal{X}$ , we have*

$$P(\cap_{i=1}^n \{X_i = x_i\} \mid \{X_0 = x_0\}) = P(\cap_{i=1}^n \{X_{m+i} = x_i\} \mid \{X_m = x_0\}) = \prod_{i=1}^n p_{x_{i-1} x_i}.$$

*Proof.* To this end, we compute the transition probabilities for the path  $(x_1, \dots, x_n)$  taken by

- (i) the sample path  $(X_1, \dots, X_n)$  given the event  $\{X_0 = x_0\}$  and

(ii) by the sample path  $(X_{m+1}, \dots, X_{m+n})$  given the event  $\{X_m = x_0\}$ .

For each  $i \in \{0, \dots, n\}$ , we can define events  $H_i \triangleq \bigcap_{j=0}^i \{X_j = x_j\}$ . We observe that  $H_i = \{X_i = x_i\} \cap H_{i-1}$  and  $H_i \in \mathcal{F}_i = \sigma(X_0, \dots, X_i)$  for all  $i \in \mathbb{N}$ . From the definition of event  $H_{n-1}$  and the conditional probability, we can write

$$P_{x_0}(H_n) = P_{x_0}(\{X_n = x_n\} \cap H_{n-1}) = P(\{X_n = x_n\} \mid H_{n-1})P_{x_0}(H_{n-1}).$$

Using the fact that  $H_{n-1} = \{X_{n-1} = x_{n-1}\} \cap H_{n-2}$ , and the Markovity and homogeneity of the process  $X$ , we obtain

$$P(\{X_n = x_n\} \mid H_{n-1}) = P(\{X_n = x_n\} \mid \{X_{n-1} = x_{n-1}\} \cap H_{n-2}) = p_{x_{n-1}x_n}.$$

Inductively, we can write the conditional joint distribution of  $H_n$  given the event  $\{X_0 = x_0\}$  as

$$P_{x_0}(H_n) = p_{x_0x_1} \dots p_{x_{n-1}x_n}.$$

Similarly, we can write for the sample path  $(X_{m+1}, \dots, X_{m+n})$  given  $X_m = x_0$ ,

$$P(\{X_{m+1} = x_1, \dots, X_{m+n} = x_n\} \mid \{X_m = x_0\}) = \prod_{i=1}^n P(\{X_{m+i} = x_i\} \mid \{X_{m+i-1} = x_{i-1}\}) = p_{x_0x_1} \dots p_{x_{n-1}x_n}.$$

□

**Corollary 4.3.** *The  $n$ -step transition probabilities are stationary for any homogeneous Markov chain. That is, for any states  $x_0, x_n \in \mathcal{X}$  and  $n \in \mathbb{N}$ , we have*

$$P(\{X_{n+m} = x_n\} \mid \{X_m = x_0\}) = P(\{X_n = x_n\} \mid \{X_0 = x_0\}).$$

*Proof.* It follows from summing over intermediate steps. Let  $x \triangleq (x_1, \dots, x_{n-1}) \in \mathcal{X}^{n-1}$ , then we can partition the event  $\{X_n = x_n\}$  in terms of disjoint events  $\{H_{n-1}(x) \cap \{X = x_n\} : x \in \mathcal{X}^{n-1}\}$  defined by  $H_{n-1}(x) \triangleq \bigcap_{i=1}^{n-1} \{X_i = x_i\}$ , and partition the event  $\{X_{m+n} = x_n\}$  in terms of the disjoint events  $\{F_{n-1}(x) \cap \{X_{m+n} = x_n\} : x \in \mathcal{X}^{n-1}\}$  defined by  $F_{n-1}(x) \triangleq \bigcap_{i=1}^{n-1} \{X_{m+i} = x_i\}$ . Then, we can write

$$\{X_n = x_n\} = \bigcup_{x \in \mathcal{X}^{n-1}} H_{n-1}(x) \cap \{X_n = x_n\}, \quad \{X_{m+n} = x_n\} = \bigcup_{x \in \mathcal{X}^{n-1}} F_{n-1}(x) \cap \{X_{m+n} = x_n\}.$$

From the stationarity in joint distribution conditioned on initial state for the homogeneous Markov chain  $X$ , we have

$$P(F_{n-1}(x) \cap \{X_{m+n} = x_n\} \mid \{X_m = x_0\}) = P(H_{n-1}(x) \cap \{X_n = x_n\} \mid \{X_0 = x_0\}).$$

Using the law of total probability, we can write the conditional probability

$$P_{x_0}\{X_n = x_n\} = \sum_{x \in \mathcal{X}^{n-1}} P_{x_0}(H_{n-1}(x) \cap \{X_n = x_n\}),$$

$$P(\{X_{m+n} = x_n\} \mid \{X_m = x_0\}) = \sum_{x \in \mathcal{X}^{n-1}} P(F_{n-1}(x) \cap \{X_{m+n} = x_n\} \mid \{X_m = x_0\}).$$

The result follows since each term in the summation is equal. □

**Definition 4.4.** For a time homogeneous Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$ , we can define  **$n$ -step transition probability matrix**  $P^{(n)}$ , with its  $(x, y)$  entry being the  **$n$ -step transition probability** for  $X_{m+n}$  to be in state  $y$  given the event  $\{X_m = x\}$ . That is,  $p_{xy}^{(n)} \triangleq P(\{X_{n+m} = y\} \mid \{X_m = x\})$  for all  $x, y \in \mathcal{X}$  and  $m, n \in \mathbb{Z}_+$ .

**Remark 6.** That is, the row  $P_x^{(n)} = (p_{xy}^{(n)} : y \in \mathcal{X}) \in \mathcal{M}(\mathcal{X})$  is the conditional distribution of  $X_n$  given the initial state  $\{X_0 = x\}$ .

**Example 4.5 (Sequence of experiments).** Consider the time homogeneous Markov chain  $X : \Omega \rightarrow \mathbb{Z}^{\mathbb{Z}_+}$  introduced in Example 3.3. We denote the conditional distribution of  $X_{n+1}$  given  $\{X_0 = 0\}$  by  $\nu_{n+1}$ , and the conditional distribution of  $X_{n+1}$  given  $\{X_0 = 1\}$  by  $\mu_{n+1}$ . That is,

$$\begin{aligned}\nu_n &= [P_0(\{X_n = 0\}) \quad P_0(\{X_n = 1\})], \\ \mu_n &= [P_1(\{X_n = 0\}) \quad P_1(\{X_n = 1\})].\end{aligned}$$

Let  $\pi_0$  be the initial distribution on the experiment outcome, and  $\pi_n$  be the distribution of the experiment outcome at time  $n$ . Then, we can write

$$\pi_n(0) \triangleq P\{X_n = 0\} = P_0(\{X_n = 0\})\pi_0(0) + P_1(\{X_n = 0\})\pi_0(1) = \nu_n(0)\pi_0(0) + \mu_n(0)\pi_0(1).$$

Similarly, we can write  $\pi_n(1) = \nu_n(1)\pi_0(0) + \mu_n(1)\pi_0(1)$ . That is, we can write

$$\pi_n \triangleq [\pi_n(0) \quad \pi_n(1)] = [\pi_0(0) \quad \pi_0(1)] \begin{bmatrix} \nu_n(0) & \nu_n(1) \\ \mu_n(0) & \mu_n(1) \end{bmatrix} = \pi_0 \begin{bmatrix} \nu_n \\ \mu_n \end{bmatrix}.$$

That is to compute the unconditional distribution of  $X_n$ , given initial distribution  $\pi_0$ , we need to compute conditional distributions  $\nu_n$  and  $\mu_n$ . We can see that

$$\begin{aligned}\nu_1 &= [1-p \quad p], & \nu_2 &= [(1-p)^2 + pq \quad (1-p)p + p(1-q)], \\ \mu_1 &= [q \quad 1-q], & \mu_2 &= [q(1-p) + (1-q)q \quad (1-q)^2 + qp].\end{aligned}$$

This method of direct computation can quickly become too cumbersome.

**Theorem 4.6.** *The  $n$ -step transition probabilities for a homogeneous Markov chain form a semi-group. That is, for all positive integers  $m, n \in \mathbb{Z}_+$*

$$P^{(m+n)} = P^{(m)}P^{(n)}.$$

*Proof.* The events  $\{\{X_m = z\} : z \in \mathcal{X}\}$  partition the sample space  $\Omega$ , and hence we can express the event  $\{X_{m+n} = y\}$  as the following disjoint union

$$\{X_{m+n} = y\} = \bigcup_{z \in \mathcal{X}} \{X_{m+n} = y, X_m = z\}.$$

It follows from the Markov property and law of total probability that for any states  $x, y$  and positive integers  $m, n$

$$\begin{aligned}p_{xy}^{(m+n)} &= \sum_{z \in \mathcal{X}} P_x(\{X_{n+m} = y, X_m = z\}) = \sum_{z \in \mathcal{X}} P(\{X_{n+m} = y \mid X_m = z, X_0 = x\})P_x(\{X_m = z\}) \\ &= \sum_{z \in \mathcal{X}} P(\{X_{n+m} = y \mid X_m = z\})P_x(\{X_m = z\}) = \sum_{z \in \mathcal{X}} p_{xz}^{(m)} p_{zy}^{(n)} = (P^{(m)}P^{(n)})_{xy}.\end{aligned}$$

Since the choice of states  $x, y \in \mathcal{X}$  were arbitrary, the result follows.  $\square$

**Corollary 4.7.** *The  $n$ -step transition probability matrix is given by  $P^{(n)} = P^n$  for any positive integer  $n$ .*

*Proof.* In particular, we have  $P^{(n+1)} = P^{(n)}P^{(1)} = P^{(1)}P^{(n)}$ . Since  $P^{(1)} = P$ , we have  $P^{(n)} = P^n$  by induction.  $\square$

*Remark 7.* That is, for all states  $x, y$  and non-negative integers  $n \in \mathbb{Z}_+$ ,  $p_{xy}^{(n)} = P_{xy}^n$ .

## 5 Chapman Kolmogorov equations

We denote by  $\pi_0 \in \mathbb{R}_+^{\mathcal{X}}$  the initial distribution of the Markov chain, that is  $\pi_0(x) = P\{X_0 = x\}$ . The distribution of  $X_n$  is given by  $\pi_n \in \mathbb{R}_+^{\mathcal{X}}$ , such that for any state  $x \in \mathcal{X}$

$$\pi_n(x) = P\{X_n = x\} = \sum_{z \in \mathcal{X}} p_{zx}^{(n)} \pi_0(z) = (\pi_0 P^n)_x.$$

We can write this succinctly in terms of transition probability matrix  $P$  as  $\mu_n = \mu_0 P^n$ . We can alternatively derive this result by the following Lemma.

**Lemma 5.1.** *The right multiplication of a probability vector with the transition matrix  $P$  transforms the probability distribution of current state to probability distribution of the next state. That is,*

$$\pi_{n+1} = \pi_n P, \text{ for all } n \in \mathbb{N}.$$

*Proof.* To see this, we fix  $y \in \mathcal{X}$  and from the law of total probability and the definition conditional probability, we observe that

$$\pi_{n+1}(y) = P\{X_{n+1} = y\} = \sum_{x \in \mathcal{X}} P\{X_{n+1} = y, X_n = x\} = \sum_{x \in \mathcal{X}} P\{X_n = x\} p_{xy} = (\pi_n P)_y.$$

□