

Lecture-21: Recurrent and transient states

1 Recurrence and Transience

Definition 1.1. For a process $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}^+}$ event A and random variable $Y : \Omega \rightarrow \mathbb{R}$, we denote the conditional probability and conditional distribution, given the initial state $\{X_0 = x\}$ by $P_x(A) \triangleq P(A \mid \{X_0 = x\})$ and $\mathbb{E}_x Y = \mathbb{E}[Y \mid \{X_0 = x\}]$ respectively.

Definition 1.2. For a random sequence $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}^+}$ with initial state $X_0 = x$,

- (i) the **probability of hitting state y eventually** is denoted by $f_{xy} \triangleq P_x \left\{ \tau_X^{\{y\}, \ell} < \infty \right\}$, and
- (ii) the **probability of first visit to state y at time $n \in \mathbb{N}$** is denoted by $f_{xy}^{(n)} \triangleq P_x \left\{ \tau_X^{\{y\}, \ell} = n \right\}$.

Remark 1. We can write the finiteness of hitting time $\tau_X^{\{y\}, \ell}$ as the disjoint union $\left\{ \tau_X^{\{y\}, \ell} < \infty \right\} = \cup_{n \in \mathbb{N}} \left\{ \tau_X^{\{y\}, \ell} = n \right\}$.

Therefore, $f_{xy} = \sum_{n \in \mathbb{N}} f_{xy}^{(n)}$.

Remark 2. If $f_{xy} = P_x \left\{ \tau_X^{\{y\}, \ell} < \infty \right\} = 1$ for all initial states $x \in \mathcal{X}$, then $\tau_X^{\{y\}, \ell}$ is almost surely finite and hence a stopping time.

Definition 1.3. From the initial state x , the distribution

- (i) for the first hitting time to state y is called the **first passage time distribution** and denoted by $((f_{xy}^{(n)} : n \in \mathbb{N}), 1 - f_{xy})$, and
- (ii) for the first return time to state x is called the **first recurrence time distribution** and denoted by $((f_{xx}^{(n)} : n \in \mathbb{N}), 1 - f_{xx})$.

Definition 1.4. A state is called **recurrent** if $f_{xx} = 1$, and is called **transient** if $f_{xx} < 1$.

Definition 1.5. For any state $x \in \mathcal{X}$, the **mean recurrence time** is denoted by $\mu_{xx} \triangleq \mathbb{E}_x \tau_x^{(1)}$.

Remark 3. The mean recurrence time for any transient state is infinite. For any recurrent state $x \in \mathcal{X}$, $\tau_x^{(1)} = \tau_x^{(1)} \mathbb{1}_{\{\tau_x^{(1)} < \infty\}} = \sum_{n \in \mathbb{N}} n \mathbb{1}_{\{\tau_x^{(1)} = n\}}$ almost surely, and the mean recurrence time is given by $\mu_{xx} = \sum_{n \in \mathbb{N}} n f_{xx}^{(n)}$.

Definition 1.6. For a recurrent state $x \in \mathcal{X}$,

- (i) if the mean recurrence time is finite, then the state x is called **positive recurrent**, and
- (ii) if the mean recurrence time is infinite, then the state x is called **null recurrent**.

Proposition 1.7. For a homogeneous discrete Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}^+}$, we have

$$P_x \left\{ N_y = m \right\} = \begin{cases} 1 - f_{xy}, & m = 0, \\ f_{xy} f_{yy}^{m-1} (1 - f_{yy}), & m \in \mathbb{N}. \end{cases}$$

Proof. We can write the event of zero visits to state y as $\{N_y(\infty) = 0\} = \left\{ \tau_X^{\{y\}, \ell} = \infty \right\}$. Further, we can write the event of m visits to state y as

$$\{N_y(\infty) = m\} = \left\{ \tau_X^{\{y\}, m} < \infty \right\} \cap \left\{ \tau_X^{\{y\}, m+1} = \infty \right\} = \cap_{j=1}^m \left\{ H_X^{\{y\}, j} < \infty \right\} \cap \left\{ H_X^{\{y\}, m+1} = \infty \right\}, \quad m \in \mathbb{N}.$$

Recall that $(H_X^{\{y\},k} : k \in \mathbb{N})$ is an independent random sequence with $(H_X^{\{y\},k} : k \geq 2)$ identically distributed, with $P_x \{ H_X^{\{y\},k} = n \} = P_y \{ \tau_X^{\{y\},\ell} = n \}$ for all $k \geq 2$. Therefore, we get

$$P_x \{ N_y = m \} = P_x \{ H_X^{\{y\},1} < \infty \} \prod_{j=2}^m P_x \{ H_X^{\{y\},j} < \infty \} P_x \{ H_X^{\{y\},m+1} = \infty \} = f_{xy} f_{yy}^{m-1} (1 - f_{yy}).$$

□

Corollary 1.8. For a homogeneous Markov chain X , we have $P_x \{ N_y < \infty \} = \mathbb{1}_{\{f_{yy} < 1\}} + (1 - f_{xy}) \mathbb{1}_{\{f_{yy} = 1\}}$.

Proof. We can write the event $\{ N_y < \infty \}$ as disjoint union of events $\{ N_y = n \}$, to get the result. □

Remark 4. For a time homogeneous Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$, we have

- (i) $P_x \{ N_y = \infty \} = f_{xy} \mathbb{1}_{\{f_{yy} = 1\}}$, and
- (ii) $P_y \{ N_y = \infty \} = \mathbb{1}_{\{f_{yy} = 1\}}$.

Corollary 1.9. The mean number of visits to state y , starting from a state x is $\mathbb{E}_x N_y = \frac{f_{xy}}{1 - f_{yy}} \mathbb{1}_{\{f_{yy} < 1\}} + \infty \mathbb{1}_{\{f_{xy} > 0, f_{yy} = 1\}}$.

Remark 5. For any $x \in \mathcal{X}$, we have $\mathbb{E}_x N_x = \frac{f_{xx}}{1 - f_{xx}} \mathbb{1}_{\{f_{xx} < 1\}} + \infty \mathbb{1}_{\{f_{xx} = 1\}}$. That is, the mean number of visits to initial state x is finite iff the state x is transient.

Remark 6. In particular, this corollary implies the following consequences.

- i. A transient state is visited a finite amount of times almost surely. This follows from Corollary 1.8, since $P_x \{ N_y < \infty \} = 1$ for all transient states $y \in \mathcal{X}$ and any initial state $x \in \mathcal{X}$.
- ii. A recurrent state is visited infinitely often almost surely. This also follows from Corollary 1.8, since $P_y \{ N_y < \infty \} = 0$ for all recurrent states $y \in \mathcal{X}$.
- iii. In a finite state Markov chain, not all states may be transient.

Proof. To see this, we assume that for a finite state space \mathcal{X} , all states $y \in \mathcal{X}$ are transient. Then, we know that N_y is finite almost surely for all states $y \in \mathcal{X}$. It follows that, for any initial state $x \in \mathcal{X}$

$$0 \leq P_x \left\{ \sum_{y \in \mathcal{X}} N_y = \infty \right\} = P_x (\cup_{y \in \mathcal{X}} \{ N_y = \infty \}) \leq \sum_{y \in \mathcal{X}} P_x \{ N_y = \infty \} = 0.$$

It follows that $\sum_{x \in \mathcal{X}} N_x$ is also finite almost surely for all states $y \in \mathcal{X}$ for finite state space \mathcal{X} . However, we know that $\sum_{x \in \mathcal{X}} N_x = \sum_{k \in \mathbb{N}} \sum_{x \in \mathcal{X}} \mathbb{1}_{\{X_k = x\}} = \infty$. This leads to a contradiction. □

Proposition 1.10. For a homogeneous DTMC $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$, a state x is recurrent iff $\sum_{k \in \mathbb{N}} p_{xx}^{(k)} = \infty$, and transient iff $\sum_{k \in \mathbb{N}} p_{xx}^{(k)} < \infty$.

Proof. Recall that if the mean recurrence time to a state x is $\mathbb{E}_x N_x = \sum_{k \in \mathbb{N}} p_{xx}^k$ finite then the state is transient and infinite if the state is recurrent. □

Corollary 1.11. For a transient state $y \in \mathcal{X}$, the following limits hold $\lim_{n \rightarrow \infty} p_{xy}^{(n)} = 0$, and $\lim_{n \rightarrow \infty} \frac{\sum_{k=1}^n p_{xy}^{(k)}}{n} = 0$.

Proof. For a transient state $y \in \mathcal{X}$ and any state $x \in \mathcal{X}$, we have $\mathbb{E}_x N_y = \sum_{n \in \mathbb{N}} p_{xy}^{(n)} < \infty$. Since the series sum is finite, it implies that the limiting terms in the sequence $\lim_{n \rightarrow \infty} p_{xy}^{(n)} = 0$. Further, we can write $\sum_{k=1}^n p_{xy}^{(k)} \leq \mathbb{E}_x N_y \leq M$ for some $M \in \mathbb{N}$ and hence $\lim_{n \rightarrow \infty} \frac{\sum_{k=1}^n p_{xy}^{(k)}}{n} = 0$. □

Lemma 1.12. For any state $y \in \mathcal{X}$, let $(H_X^{\{y\},\ell} : \ell \in \mathbb{N})$ be the sequence of almost surely finite inter-visit times to state y , and $N_y(n) = \sum_{k=1}^n 1_{\{X_k=y\}}$ be the number of visits to state y in n times. Then, $N_y(n) + 1$ is a finite mean stopping time with respect to the sequence $(H_X^{\{y\},\ell} : \ell \in \mathbb{N})$.

Proof. We first observe that $N_y(n) + 1 \leq n + 1$ and hence has a finite mean for each $n \in \mathbb{N}$. Further, we observe that $\{N_y(n) + 1 = k\}$ can be completely determined by observing $H_X^{\{y\},1}, \dots, H_X^{\{y\},k}$. To see this, we notice that

$$\{N_y(n) + 1 = k\} = \left\{ \sum_{\ell=1}^{k-1} H_X^{\{y\},\ell} \leq n < \sum_{\ell=1}^k H_X^{\{y\},\ell} \right\} \in \sigma(H_X^{\{y\},1}, \dots, H_X^{\{y\},k}).$$

□

Theorem 1.13. Let $x, y \in \mathcal{X}$ be such that $f_{xy} = 1$ and y is recurrent. Then, $\lim_{n \rightarrow \infty} \frac{\sum_{k=1}^n p_{xy}^{(k)}}{n} = \frac{1}{\mu_{yy}}$.

Proof. Let $y \in \mathcal{X}$ be recurrent. The proof consists of three parts. In the first two parts, we will show that starting from the state y , we have the limiting empirical average of mean number of visits to state y is $\lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_y N_y(n) = \frac{1}{\mu_{yy}}$. In the third part, we will show that for any starting state $x \in \mathcal{X}$ such that $f_{xy} = 1$, we have the limiting empirical average of mean number of visits to state y is $\lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_x N_y(n) = \frac{1}{\mu_{yy}}$.

Lower bound: We observe that $N_y(n) + 1$ is a stopping time with respect to inter-visit times $(H_X^{\{y\},\ell} : \ell \in \mathbb{N})$ from Lemma 1.12. Further, we have $\sum_{\ell=1}^{N_y(n)+1} H_X^{\{y\},\ell} > n$. Applying Wald's Lemma to the random sum $\sum_{\ell=1}^{N_y(n)+1} H_X^{\{y\},\ell}$, we get $\mathbb{E}_y(N_y(n) + 1)\mu_{yy} > n$. Taking limits, we obtain $\liminf_{n \in \mathbb{N}} \frac{\sum_{k=1}^n p_{yy}^{(k)}}{n} \geq \frac{1}{\mu_{yy}}$.

Upper bound: Given a fixed positive integer $M \in \mathbb{N}$, we define truncated recurrence times

$$\bar{H}_X^{\{y\},\ell} \triangleq M \wedge H_X^{\{y\},\ell} \text{ for all } \ell \in \mathbb{N}.$$

Since $H_X^{\{y\}}$ is *i.i.d.* given the initial state y , then so is $\bar{H}_X^{\{y\},1}$ and $\bar{H}_X^{\{y\},\ell} \leq H_X^{\{y\},\ell}$ for all $\ell \in \mathbb{N}$. We define the mean of the truncated recurrence times as $\bar{\mu}_{yy} \triangleq \mathbb{E}_y \bar{H}_X^{\{y\},1}$. From the monotonicity of truncation, we get $\bar{\mu}_{yy} \leq \mu_{yy}$.

We define the random variable $\bar{\tau}_X^{\{y\},k} \triangleq \sum_{\ell=1}^k \bar{H}_X^{\{y\},\ell}$ for all $k \in \mathbb{N}$, and $\bar{\tau}_X^{\{y\},k} \leq \tau_X^{\{y\},k}$ for all $k \in \mathbb{N}$. We can define the associated counting process that counts number of truncated recurrences in first n steps as $\bar{N}_y(n) \triangleq \sum_{k \in \mathbb{N}} \mathbb{1}_{\{\bar{\tau}_X^{\{y\},k} \leq n\}}$ for all $n \in \mathbb{N}$. Further, we have

$$\sum_{\ell=1}^{\bar{N}_y(n)+1} \bar{H}_X^{\{y\},\ell} = \bar{\tau}_X^{\{y\},\bar{N}_y(n)+1} = \bar{\tau}_X^{\{y\},\bar{N}_y(n)} + \bar{H}_X^{\{y\},\bar{N}_y(n)+1} \leq n + M.$$

Since $\bar{N}_y(n) + 1$ is a stopping time with respect to *i.i.d.* process $\bar{H}_X^{\{y\}}$, and $\bar{N}_y(n) \geq N_y(n)$ sample path wise. From Wald's Lemma, we get

$$\mathbb{E}_y(N_y(n) + 1)\bar{\mu}_{yy} \leq \mathbb{E}_y(\bar{N}_y(n) + 1)\bar{\mu}_{yy} \leq n + M.$$

Taking limits, we obtain $\limsup_{n \in \mathbb{N}} \frac{\sum_{k=1}^n p_{xy}^{(k)}}{n} \leq \frac{1}{\bar{\mu}_{yy}}$. Letting M grow arbitrarily large, we obtain the upper bound.

Starting from x : Further, we observe that $p_{xy}^{(k)} = \sum_{s=0}^{k-1} f_{xy}^{(k-s)} p_{yy}^{(s)}$. Since $1 = f_{xy} = \sum_{k \in \mathbb{N}} f_{xy}^{(k)}$, we have

$$\sum_{k=1}^n p_{xy}^{(k)} = \sum_{k=1}^n \sum_{s=0}^{k-1} f_{xy}^{(k-s)} p_{yy}^{(s)} = \sum_{s=0}^{n-1} p_{yy}^{(s)} \sum_{k=s+1}^{n-s} f_{xy}^{(k-s)} = \sum_{s=0}^{n-1} p_{yy}^{(s)} - \sum_{s=0}^{n-1} p_{yy}^{(s)} \sum_{k>n-s} f_{xy}^{(k)}.$$

Since the series $\sum_{k \in \mathbb{N}} f_{xy}^{(k)}$ converges, we get $\lim_{n \rightarrow \infty} \frac{\sum_{k=1}^n p_{xy}^{(k)}}{n} = \lim_{n \rightarrow \infty} \frac{\sum_{k=1}^n p_{yy}^{(k)}}{n}$.

□