Lecture-21: Recurrent and transient states

1 Recurrence and Transience

Definition 1.1. For a process X : ) — XR+ event A and random variable Y : QO — R, we denote the condi-
tional probability and conditional distribution, given the initial state { Xo = x} by Py(A) £ P(A | {Xo = x})
and E,Y = E[Y | {Xo = x}] respectively.

Definition 1.2. For a random sequence X : Q) — X%+ with initial state X = x,
(i) the probability of hitting state y eventually is denoted by fy, 2P, {T){(y b < oo}, and

(i) the probability of first visit to state y at time 7 € N is denoted by f{i) £ P, {T){(y - n} .

Remark 1. We can write the finiteness of hitting time T}{g}'é as the disjoint union {T){(y b < oo} =UpeN {T){(y L }
Therefore, fry, =Y ,eN f;;)

Remark 2. If fry = Py {T){(y bt < oo} =1 for all initial states x € X, then Ti{(y bt is almost surely finite and hence

a stopping time.

Definition 1.3. From the initial state x, the distribution

(i) for the first hitting time to state y is called the first passage time distribution and denoted by (( f,g;l )
ne€N),1— fy),and
(i) for the first return time to state x is called the first recurrence time distribution and denoted by

(A eN)1— fu).
Definition 1.4. A state is called recurrent if fy, =1, and is called transient if f,, < 1.

(1)

Definition 1.5. For any state x € X, the mean recurrence time is denoted by i, L2 E, 1y .
(1)

Remark 3. The mean recurrence time for any transient state is infinite. For any recurrent state x € X, 7y’ =

T,Sl) 1, @ =Ynently )y almostsurely, and the mean recurrence time is given by jxx =} N7 fJEZ .
() <o) (=)

Definition 1.6. For a recurrent state x € X,
(i) if the mean recurrence time is finite, then the state x is called positive recurrent, and
(ii) if the mean recurrence time is infinite, then the state x is called null recurrent.

Proposition 1.7. For a homogeneous discrete Markov chain X : Q — X%+, we have

) 1= fxy, m =0,
P, {Ny } {fxyfﬂl(l _ fyy>r meN.

Proof. We can write the event of zero visits to state y as { N, (c0) =0} = {T){(y - oo}. Further, we can write
the event of m visits to state y as

(Ny(es) = m} = {7 < oo e oo} = Y < oo (P — o), e



Recall that (H ){(y Moke IN) is an independent random sequence with (H ){(y MRk > 2) identically distributed,
with P, {H}{(y}'k = n} =Py {T){(y}’f = n} for all k > 2. Therefore, we get

m .
PNy =m} =P {HY" < oo}llpx [HYY <ol P HYI™ = cod = fo f1(1 - f).
j=

Corollary 1.8. For a homogeneous Markov chain X, we have Py { Ny < co} = ]l{fyy<1} +(1- fxy)]l{fwzl}'

Proof. We can write the event { N, < co} as disjoint union of events { N, = n}, to get the result. O

Remark 4. For a time homogeneous Markov chain X : Q — X%+, we have
(1) Px {Ny = oo} = fxy]l{fw:l}’ and
(ﬁ) Py {Ny = OO} = ﬂ{fyyil}'

Corollary 1.9. The mean number of visits to statey, starting from a state x is ExN,, = 1{“—;;1/ ]l{fyy<1} + oo}l{fw>0 f=1}"

Remark 5. For any x € X, we have EyN, = 1{% ]1{ fax<1} T 00]1{ Fex=1}- That is, the mean number of visits to
initial state x is finite iff the state x is transient.

Remark 6. In particular, this corollary implies the following consequences.

i_ A transient state is visited a finite amount of times almost surely. This follows from Corollary .8
since P, {N,, < oo} =1 for all transient states y € X and any initial state x € X.

ii_ A recurrent state is visited infinitely often almost surely. This also follows from Corollary [1.8} since
Py {N, < co} =0 for all recurrent states y € X.

iii- In a finite state Markov chain, not all states may be transient.

Proof. To see this, we assume that for a finite state space X, all states y € X are transient. Then, we
know that Ny, is finite almost surely for all states y € X. It follows that, for any initial state x € X

0§Px{ ZNyzoo}:Px(Uyex{Nyzoo})< ZPX{Ny:oo}:O.
yeX yeX

It follows that Y ..o Ny is also finite almost surely for all states y € X for finite state space X.
However, we know that }_,cxc Nx = ¥ reN Lxex 1{x,=x} = 0. This leads to a contradiction. O

Proposition 1.10. For a homogeneous DTMC X : Q) — X%+, a state x is recurrent iff Y e p&’j} = oo, and transient
. k
iff YkeN pa(cx) < oo

Proof. Recall that if the mean recurrence time to a state x is Ex Ny = Yy P, finite then the state is transient
and infinite if the state is recurrent. O
no (k)
Corollary 1.11. For a transient state y € X, the following limits hold limy, e pg((';) =0, and limy 0 Z":% =0.
(n)

Proof. For a transient state y € X and any state x € X, we have ExNy =}, ey Pay < 0. Since the series

sum is finite, it implies that the limiting terms in the sequence lim;, oo pg;) = 0. Further, we can write

n (k)
Yiq pg;) < ExNy < M for some M € N and hence lim;, Z"ﬂ% =0. O



Lemma 1.12. For any state y € X, let (H ){(y ore IN) be the sequence of almost surely finite inter-visit times to
state y, and Ny(n) = Y4 11x,—, be the number of visits to state y in n times. Then, Ny(n) + 1 is a finite mean

stopping time with respect to the sequence (Hy; Witire IN).

Proof. We first observe that N, (1) +1 < n + 1 and hence has a finite mean for each n € IN. Further, we

HY, L HY

observe that { N, (1) + 1 =k} can be completely determined by observing . To see this, we

notice that

(Ny(n) +1 =K} = {ZH{W<n<ZH{W}@(HWU HU,

(k)
Theorem 1.13. Let x,y € X be such that fy, =1 and y is recurrent. Then, lim, e Lie 1p 2 = ]41@

Proof. Let y € X be recurrent. The proof consists of three parts. In the first two parts, we will show that
starting from the state y, we have the limiting empirical average of mean number of visits to state y is

limy, 00 2B, Ny (1) = V%/v In the third part, we will show that for any starting state x € X such that fy, =1,

we have the limiting empirical average of mean number of visits to state y is lim,—co %IE xNy(n) = %yy
Lower bound: We observe that Ny (1) + 1 is a stopping time with respect to inter-visit times (H ;{(y Mre IN)
from Lemmam Further, we have ZNy (n)+1 Hy WS, Applying Wald’s Lemma to the random sum

(k)
22\35")“ H}{(y}’g , we get E, (N, (n) +1)py, > n. Taking limits, we obtain liminf, < Lic IPW > ﬁ

Upper bound: Given a fixed positive integer M € IN, we define truncated recurrence times
H}{(y},é EMA H;{(y}'z forall £ € IN.

Since H;{(y Visiid. given the initial state y, then so is H ){(y M and I:I}{(y b < H;{(y M for all £ € N. We define
the mean of the truncated recurrence times as fiy, = E,H §(y I From the monotonicity of truncation,
we get fiyy < Hyy-

We define the random variable T){(y bk o 212:1 H }{(y bt forall k € N, and T){(y bk < T){(y bk for all k € N. We

can define the associated counting process that counts number of truncated recurrences in first # steps
N A

as Ny(n) = Yren l{i_}{{y},kgn} for all n € IN. Further, we have

Ny (n)+1 _ _
’(Z); A R Ry | R
(=1

Since Ny, (1) + 1 is a stopping time with respect to i.i.d. process H ;{(y } and Ny(n) > Ny (n) sample path
wise. From Wald’s Lemma, we get

Ey(Ny(n) +1)fiyy < Ey(Ny(n) +1)fiyy <n+ M.

n k)
Taking limits, we obtain limsup, i E":ilpxy < ﬁ . Letting M grow arbitrarily large, we obtain the

upper bound.

Starting from x: Further, we observe that pg(ky) = Z’S‘;é ,E’f” p;fj) Since 1 = fry = Yken fg), we have

n n—1
;ng—zzfxy Pyy—z?’yy Z f(k ’ Zpéy Zpyy )3 fxy

1s=0 k—s=1 5=0 k>n—s

(k)

k
Yho1 Pxy :
n

. , Kk . , i py
Since the series } jen f,gy) converges, we get im0 =limye0 Zk—%
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