
Lecture-21: Recurrent and transient states

1 Recurrence and Transience

Definition 1.1. For a process X : Ω → XR+ event A and random variable Y : Ω → R, we denote the condi-
tional probability and conditional distribution, given the initial state {X0 = x} by Px(A)≜ P(A | {X0 = x})
and ExY = E[Y | {X0 = x}] respectively.

Definition 1.2. For a random sequence X : Ω → XZ+ with initial state X0 = x,
(i) the probability of hitting state y eventually is denoted by fxy ≜ Px

{
τ
{y},ℓ
X < ∞

}
, and

(ii) the probability of first visit to state y at time n ∈ N is denoted by f (n)xy ≜ Px

{
τ
{y},ℓ
X = n

}
.

Remark 1. We can write the finiteness of hitting time τ
{y},ℓ
X as the disjoint union

{
τ
{y},ℓ
X < ∞

}
=∪n∈N

{
τ
{y},ℓ
X = n

}
.

Therefore, fxy = ∑n∈N f (n)xy .

Remark 2. If fxy = Px

{
τ
{y},ℓ
X < ∞

}
= 1 for all initial states x ∈X, then τ

{y},ℓ
X is almost surely finite and hence

a stopping time.

Definition 1.3. From the initial state x, the distribution
(i) for the first hitting time to state y is called the first passage time distribution and denoted by (( f (n)xy :

n ∈ N),1 − fxy), and
(ii) for the first return time to state x is called the first recurrence time distribution and denoted by

(( f (n)xx : n ∈ N),1 − fxx).

Definition 1.4. A state is called recurrent if fxx = 1, and is called transient if fxx < 1.

Definition 1.5. For any state x ∈ X, the mean recurrence time is denoted by µxx ≜ Exτ
(1)
x .

Remark 3. The mean recurrence time for any transient state is infinite. For any recurrent state x ∈ X, τ
(1)
x =

τ
(1)
x 1{

τ
(1)
X <∞

} = ∑n∈N n1{
τ
(1)
x =n

} almost surely, and the mean recurrence time is given by µxx = ∑n∈N n f (n)xx .

Definition 1.6. For a recurrent state x ∈ X,
(i) if the mean recurrence time is finite, then the state x is called positive recurrent, and

(ii) if the mean recurrence time is infinite, then the state x is called null recurrent.

Proposition 1.7. For a homogeneous discrete Markov chain X : Ω → XZ+ , we have

Px
{

Ny = m
}
=

{
1 − fxy, m = 0,
fxy f m−1

yy (1 − fyy), m ∈ N.

Proof. We can write the event of zero visits to state y as
{

Ny(∞) = 0
}
=

{
τ
{y},ℓ
X = ∞

}
. Further, we can write

the event of m visits to state y as{
Ny(∞) = m

}
=

{
τ
{y},m
X < ∞

}
∩
{

τ
{y},m+1
X = ∞

}
= ∩m

j=1

{
H{y},j

X < ∞
}
∩
{

H{y},m+1
X = ∞

}
, m ∈ N.
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Recall that (H{y},k
X : k ∈ N) is an independent random sequence with (H{y},k

X : k ⩾ 2) identically distributed,

with Px

{
H{y},k

X = n
}
= Py

{
τ
{y},ℓ
X = n

}
for all k ⩾ 2. Therefore, we get

Px
{

Ny = m
}
= Px

{
H{y},1

X < ∞
} m

∏
j=2

Px

{
H{y},j

X < ∞
}

Px

{
H{y},m+1

X = ∞
}
= fxy f m−1

yy (1 − fyy).

Corollary 1.8. For a homogeneous Markov chain X, we have Px
{

Ny < ∞
}
= 1{ fyy<1} + (1 − fxy)1{ fyy=1}.

Proof. We can write the event
{

Ny < ∞
}

as disjoint union of events
{

Ny = n
}

, to get the result.

Remark 4. For a time homogeneous Markov chain X : Ω → XZ+ , we have
(i) Px

{
Ny = ∞

}
= fxy1{ fyy=1}, and

(ii) Py
{

Ny = ∞
}
= 1{ fyy=1}.

Corollary 1.9. The mean number of visits to state y, starting from a state x is Ex Ny =
fxy

1− fyy
1{ fyy<1}+∞1{ fxy>0, fyy=1}.

Remark 5. For any x ∈ X, we have Ex Nx =
fxx

1− fxx
1{ fxx<1} + ∞1{ fxx=1}. That is, the mean number of visits to

initial state x is finite iff the state x is transient.

Remark 6. In particular, this corollary implies the following consequences.

i A transient state is visited a finite amount of times almost surely. This follows from Corollary 1.8,
since Px

{
Ny < ∞

}
= 1 for all transient states y ∈ X and any initial state x ∈ X.

ii A recurrent state is visited infinitely often almost surely. This also follows from Corollary 1.8, since
Py

{
Ny < ∞

}
= 0 for all recurrent states y ∈ X.

iii In a finite state Markov chain, not all states may be transient.

Proof. To see this, we assume that for a finite state space X, all states y ∈ X are transient. Then, we
know that Ny is finite almost surely for all states y ∈ X. It follows that, for any initial state x ∈ X

0 ⩽ Px

{
∑

y∈X
Ny = ∞

}
= Px(∪y∈X

{
Ny = ∞

}
)⩽ ∑

y∈X
Px

{
Ny = ∞

}
= 0.

It follows that ∑x∈X Nx is also finite almost surely for all states y ∈ X for finite state space X.
However, we know that ∑x∈X Nx = ∑k∈N ∑x∈X 1{Xk=x} = ∞. This leads to a contradiction.

Proposition 1.10. For a homogeneous DTMC X : Ω →XZ+ , a state x is recurrent iff ∑k∈N p(k)xx = ∞, and transient
iff ∑k∈N p(k)xx < ∞.

Proof. Recall that if the mean recurrence time to a state x is Ex Nx = ∑k∈N pk
xx finite then the state is transient

and infinite if the state is recurrent.

Corollary 1.11. For a transient state y ∈ X, the following limits hold limn→∞ p(n)xy = 0, and limn→∞
∑n

k=1 p(k)xy
n = 0.

Proof. For a transient state y ∈ X and any state x ∈ X, we have Ex Ny = ∑n∈N p(n)xy < ∞. Since the series

sum is finite, it implies that the limiting terms in the sequence limn→∞ p(n)xy = 0. Further, we can write

∑n
k=1 p(k)xy ⩽ Ex Ny ⩽ M for some M ∈ N and hence limn→∞

∑n
k=1 p(k)xy

n = 0.
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Lemma 1.12. For any state y ∈ X, let (H{y},ℓ
X : ℓ ∈ N) be the sequence of almost surely finite inter-visit times to

state y, and Ny(n) = ∑n
k=1 1{Xk=y} be the number of visits to state y in n times. Then, Ny(n) + 1 is a finite mean

stopping time with respect to the sequence (H{y},ℓ
X : ℓ ∈ N).

Proof. We first observe that Ny(n) + 1 ⩽ n + 1 and hence has a finite mean for each n ∈ N. Further, we

observe that
{

Ny(n) + 1 = k
}

can be completely determined by observing H{y},1
X , . . . , H{y},k

X . To see this, we
notice that {

Ny(n) + 1 = k
}
=

{
k−1

∑
ℓ=1

H{y},ℓ
X ⩽ n <

k

∑
ℓ=1

H{y},ℓ
X

}
∈ σ(H{y},1

X , . . . , H{y},k
X ).

Theorem 1.13. Let x,y ∈ X be such that fxy = 1 and y is recurrent. Then, limn→∞
∑n

k=1 p(k)xy
n = 1

µyy
.

Proof. Let y ∈ X be recurrent. The proof consists of three parts. In the first two parts, we will show that
starting from the state y, we have the limiting empirical average of mean number of visits to state y is
limn→∞

1
n EyNy(n) = 1

µyy
. In the third part, we will show that for any starting state x ∈ X such that fxy = 1,

we have the limiting empirical average of mean number of visits to state y is limn→∞
1
n Ex Ny(n) = 1

µyy
.

Lower bound: We observe that Ny(n) + 1 is a stopping time with respect to inter-visit times (H{y},ℓ
X : ℓ ∈ N)

from Lemma 1.12. Further, we have ∑
Ny(n)+1
ℓ=1 H{y},ℓ

X > n. Applying Wald’s Lemma to the random sum

∑
Ny(n)+1
ℓ=1 H{y},ℓ

X , we get Ey(Ny(n) + 1)µyy > n. Taking limits, we obtain liminfn∈N
∑n

k=1 p(k)yy
n ⩾ 1

µyy
.

Upper bound: Given a fixed positive integer M ∈ N, we define truncated recurrence times

H̄{y},ℓ
X ≜ M ∧ H{y},ℓ

X for all ℓ ∈ N.

Since H{y}
X is i.i.d. given the initial state y, then so is H̄{y},1

X and H̄{y},ℓ
X ⩽ H{y},ℓ

X for all ℓ ∈ N. We define

the mean of the truncated recurrence times as µ̄yy ≜ Ey H̄{y},1
X . From the monotonicity of truncation,

we get µ̄yy ⩽ µyy.

We define the random variable τ̄
{y},k
X ≜ ∑k

ℓ=1 H̄{y},ℓ
X for all k ∈ N, and τ̄

{y},k
X ⩽ τ

{y},k
X for all k ∈ N. We

can define the associated counting process that counts number of truncated recurrences in first n steps
as N̄y(n)≜ ∑k∈N1{

τ̄
{y},k
X ⩽n

} for all n ∈ N. Further, we have

N̄y(n)+1

∑
ℓ=1

H̄{y},ℓ
X = τ̄

{y},N̄y(n)+1
X = τ̄

{y},N̄y(n)
X + H̄{y},N̄y(n)+1

X ⩽ n + M.

Since N̄y(n) + 1 is a stopping time with respect to i.i.d. process H̄{y}
X , and N̄y(n)⩾ Ny(n) sample path

wise. From Wald’s Lemma, we get

Ey(Ny(n) + 1)µ̄yy ⩽ Ey(N̄y(n) + 1)µ̄yy ⩽ n + M.

Taking limits, we obtain limsupn∈N

∑n
k=1 p(k)xy

n ⩽ 1
µ̄yy

. Letting M grow arbitrarily large, we obtain the
upper bound.

Starting from x: Further, we observe that p(k)xy = ∑k−1
s=0 f (k−s)

xy p(s)yy . Since 1 = fxy = ∑k∈N f (k)xy , we have

n

∑
k=1

p(k)xy =
n

∑
k=1

k−1

∑
s=0

f (k−s)
xy p(s)yy =

n−1

∑
s=0

p(s)yy

n−s

∑
k−s=1

f (k−s)
xy =

n−1

∑
s=0

p(s)yy −
n−1

∑
s=0

p(s)yy ∑
k>n−s

f (k)xy .

Since the series ∑k∈N f (k)xy converges, we get limn→∞
∑n

k=1 p(k)xy
n = limn→∞

∑n
k=1 p(k)yy

n .
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