
Lecture-23: Invariant Distribution

1 Invariant Distribution

Let X : Ω →XZ+ be a time-homogeneous Markov chain with transition probability matrix P : X×X→ [0,1].

Definition 1.1. A probability distribution π ∈ M(X)is said to be stationary distribution or invariant dis-
tribution for the Markov chain X if it satisfies the global balance equation π = πP.

Definition 1.2. When the initial distribution of a Markov chain is ν ∈M(X), then the condition probability
is denoted by Pν : F → [0,1] defined by

Pν(A)≜ ∑
x∈X

ν(x)Px(A) for all events A ∈ F.

Definition 1.3. For a Markov chain X : Ω →XZ+ , we denote the distribution of random variable Xn : Ω →X

by νn ∈M(X) for all n ∈ Z+. That is, νn(x)≜ Pν0 {Xn = x} for all x ∈ X.

Remark 1. We observe that νn(x) = ∑z∈X ν0(z)(Pn)zx for all x ∈ X.

Remark 2. Facts about the invariant distribution π.

i The global balance equation π = πP is a matrix equation, that is we have a collection of |X| equa-
tions πy = ∑x∈X πx pxy for each y ∈ X.

ii Balance equation across cuts is πy(1 − pyy) = πy ∑x ̸=y pyx = ∑x ̸=y πx pxy.

iii The invariant distribution π is left eigenvector of stochastic matrix P with the largest eigenvalue 1.
The all ones vector is the right eigenvector of this stochastic matrix P for the eigenvalue 1.

iv From the Chapman-Kolmogorov equation for initial probability vector π, we have π = πPn for
n ∈ N. That is, if ν0 = π, then νn = π for all n ∈ Z+.

v Resulting process with initial distribution π is stationary, and hence have shift-invariant finite
dimensional distributions. For example, for any k,n ∈ Z+ and x0, . . . , xn ∈ X, we have

Pπ {X0 = x0, . . . , Xn = xn} = Pπ {Xk = x0, . . . , Xk+n = xn} = πx0 px0x1 . . . pxn−1xn .

vi If the Markov chain is irreducible, with πx > 0 for some x ∈X. Then for any y ∈X, we have p(m)
xy > 0

for some m ∈ N. Hence, πy ⩾ πx p(m)
xy > 0. That is, the entire invariant vector is positive.

vii Any scaled version of π satisfies the global balance equation. Therefore, for any invariant vec-
tor α ∈ XR+ of transition matrix P, the sum ∥α∥1 = ∑x∈X αx must be finite for positive recurrent
Markov chains, to normalize such vectors and get a unique invariant measure π = α

∥α∥1
.

Theorem 1.4. An irreducible Markov chain with transition probability matrix P is positive recurrent iff there exists
a unique invariant probability measure π ∈M(X) that satisfies global balance equation π = πP and πx =

1
µxx

> 0
for all x ∈ X.
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Proof. We will first show that the existence of invariant distribution implies the positive recurrence implies,
and then its converse.

Implication: Let π be the positive invariant distribution of Markov chain X. Then, if the Markov chain was
transient or null recurrent, we would have limn→∞

1
n ∑n

k=1 p(k)xy = 0. Since π is an invariant vector, we
get π = πPk for each k ∈ N and hence π = π 1

n ∑n
k=1 Pk. Taking limit on both sides, we have π = 0,

yielding a contradiction for its positivity.

Converse: Let X : Ω → XZ+ be a positive recurrent Markov chain with initial state X0 = x. Recall that
Ny(n) = ∑n

k=11{Xk=y} denotes the number of visits to state y ∈ X in the first n steps of the Markov chain. It

follows that ∑y∈X Ny(n) = n for each n ∈ N. Let H(1)
x ≜ τ

(1)
x be the first recurrence time to state x, then we

have Nx(H(1)
x ) = 1 and ∑y∈X Ny(H(1)

x ) = H(1)
x .

Existence: We denote vy ≜ Ex[Ny(H(1)
x )] for each y ∈ X. We observe that vy ⩾ 0 for each state y ∈ X, in

particular vx = 1, and ∑y∈X vy = Ex H(1)
x = µxx < ∞ since X is positive recurrent. We will show that

the vector v = (vx : x ∈ X) satisfies the global balance equations v = vP, and since v is summable,
π = v

∑x∈X vx
is an invariant distribution for the Markov chain X. To see that the vector v satisfies the

global balance equations, we observe from the monotone convergence theorem

vy = Ex Ny(H(1)
x ) = Ex ∑

n∈N

1{
Xn=y,n⩽H(1)

x

} = ∑
n∈N

Px

{
Xn = y,n ⩽ H(1)

x

}
.

Let λ
(n)
xy ≜ Px

{
Xn = y,n ⩽ H(1)

x

}
. Observe that λ

(1)
xy = pxy for each y ∈ X. For n ⩾ 2, we have

λ
(n)
xy = ∑

z ̸=x
Px

{
Xn = y, Xn−1 = z,n ⩽ H(1)

x

}
= ∑

z ̸=x
P({Xn = y}

∣∣ {Xn−1 = z,n ⩽ H(1)
x , X0 = x

}
)Px

{
Xn−1 = z,n ⩽ H(1)

x

}
= ∑

z ̸=x
P({Xn = y}

∣∣ {Xn−1 = z})Px

{
Xn−1 = z,n − 1 ⩽ H(1)

x

}
= ∑

z ̸=x
λ
(n−1)
xz pzy.

From the definition of λ
(n)
xy , we have vy = ∑n∈N λ

(n)
xy for each y ∈ X. Therefore,

vy = pxy + ∑
n⩾2

∑
z ̸=x

λ
(n−1)
xz pzy = vx pxy + ∑

z ̸=x
vz pzy = ∑

x∈X
vx pxy.

Hence, π = v
∑x∈X vx

is an invariant measure of the transition matrix P, and πx =
vx

∑y∈X vy
= 1

µxx
> 0.

Uniqueness: Next, we show that this is a unique invariant measure independent of the initial state x, and
hence πy =

1
µyy

> 0 for all y ∈ X. For uniqueness, we observe from the Chapman-Kolmogorov equa-

tions and invariance of π that π = 1
n π(P + P2 + · · ·+ Pn). Hence,

πy = ∑
x∈X

πx
1
n

n

∑
k=1

p(k)xy , y ∈ X.

Taking limit n → ∞ on both sides, and exchanging limit and summation on right hand side using
bounded convergence theorem for summable series π, we get for all y ∈ X

πy =
1

µyy
∑

x∈X
πx =

1
µyy

> 0.

Corollary 1.5. An irreducible Markov chain on a finite state space X has a unique positive stationary distribution π.
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Definition 1.6. An irreducible, aperiodic, positive recurrent Markov chain is called ergodic.

Remark 3. Additional remarks about the stationary distribution π.

i For a Markov chain with multiple positive recurrent communicating classes C1, . . . ,Cm, one can
find the positive equilibrium distribution for each class, and extend it to the entire state space X

denoting it by πk for class k ∈ [m]. It is easy to check that any convex combination π = ∑m
k=1 αkπk

satisfies the global balance equation π = πP, where αk ⩾ 0 for each k ∈ [m] and ∑m
k=1 αk = 1. Hence,

a Markov chain with multiple positive recurrent classes have a convex set of invariant probability
measures, with the individual invariant distribution πk for each positive recurrent class k ∈ [m]
being the extreme points.

ii Let µ(0) = ex, that is let the initial state of the positive recurrent Markov chain be X0 = x. Then, we
know that

πy =
1

µyy
= lim

n→∞

1
n

n

∑
k=1

p(k)xy = lim
n→∞

1
n

Ex Ny(n).

That is, πy is limiting average of number of visits to state y ∈ X.

iii If a positive recurrent Markov chain is aperiodic, then limiting probability of being in a state y is
its invariant probability, that is πy = limn→∞ p(n)xy .

Theorem 1.7. For an ergodic Markov chain X with invariant distribution π, and nth step distribution µ(n), we
have limn→∞ µ(n) = π in the total variation distance.

Proof. Consider independent time homogeneous Markov chains X : Ω → XZ+ and Y : Ω → XZ+ each with
transition matrix P. The initial state of Markov chain X is assumed to be X0 = x, whereas the Markov chain
Y is assumed to have an initial distribution π. It follows that Y is a stationary process, while X is not. In
particular,

µy(n) = Px {Xn = y} = p(n)xy , Pπ {Yn = y} = πy.

Let τ = inf{n ∈ Z+ : Xn = Yn} be the first time that two Markov chains meet, called the coupling time.

Finiteness: First, we show that the coupling time is almost surely finite. To this end, we define a a new
Markov chain on state space X× X with transition probability matrix Q such that q((x,w), (y,z)) =
pxy pwz for each pair of states (x,w), (y,z) ∈ X×X. The n-step transition probabilities for this couples
Markov chain are given by

q(n)((x,w), (y,z))≜ p(n)xy p(n)wz .

Ergodicity: Since the Markov chain X with transition probability matrix P is irreducible and aperi-
odic, for each x,y,w,z ∈ X there exists an n0 ∈ Z+ such that q(n)((x,w), (y,z)) = p(n)xy p(n)wz > 0 for
all n ⩾ n0 from a previous Lemma on aperiodicity. Hence, the irreducibility and aperiodicity of
this new product Markov chain follows.

Invariant: It is easy to check that θ(x,w) = πxπw is the invariant distribution for this product Markov
chain, since θ(x,w) > 0 for each (x,w) ∈ X× X, ∑x,w∈X θ(x,w) = 1, and for each (y,z) ∈ X× X,
we have

∑
x,w∈X

θ(x,w)q((x,w), (y,z)) = ∑
x∈X

πx pxy ∑
w∈X

πw pwz = πyπz = θ(y,z).

Recurrence: This implies that the product Markov chain is positive recurrent, and each state (x, x) ∈
X×X is reachable with unit probability from any initial state (y,w) ∈ X×X.

In particular, the coupling time is almost surely finite.
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Coupled process: Second, we show that from the coupling time onwards, the evolution of two Markov
chains is identical in distribution. That is, for each y ∈ X and n ∈ Z+,

PXτ {Xn = y,n ⩾ τ} = PYτ {Yn = y,n ⩾ τ} .

This follows from the strong Markov property for the joint process where τ is stopping time for the
joint process ((Xn,Yn) : n ∈ Z+) such that Xτ = Yτ , and both marginals have the identical transition
matrix.

Limit: For any y ∈ X, we can write the difference as∣∣∣p(n)xy − πy

∣∣∣ = |Px {Xn = y,n < τ} − Pπ {Yn = y,n < τ}|⩽ 2Pδx ,π(τ > n).

Since the coupling time is almost surely finite for each initial state x,y∈X, we have ∑n∈N Pδx ,π {τ = n}=
1 and the tail-sum Pδx ,π {τ > n} goes to zero as n grows large, and the result follows.
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