Lecture-27: Poisson process on the half-line

1 Simple point processes on the half-line

A stochastic process defined on the half-line N: () — ZE* is a counting process if
1. Ng =0, and

2. for each w € ), the sample path N(w) : R; — Z is non-decreasing, integer valued, and right con-
tinuous function of time f € R;..

Each discontinuity of the sample path of the counting process can be thought of as a jump of the process, as
shown in Figure[T] A simple counting process has the unit jump size almost surely. General point processes
in higher dimension don’t have any inter-arrival time interpretation.
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Figure 1: Sample path of a simple counting process.

Lemma 1.1. A counting process N : () — Z]E* has finitely many jumps in a finite interval (0,t] almost surely.

Definition 1.2. The points of discontinuity are also called the arrival instants of the counting process N.
The nth arrival instant is a random variable denoted S, : 3 — R, defined inductively as

So =0, Sp=inf{t>0:N;>n}, neN.

Definition 1.3. The inter arrival time between (n — 1)th and nth arrival is denoted by X, and written as
X 28y — Sy

Remark 1. For a simple point process, we have P{X,, =0} = P{X, <0} =0.
Lemma 1.4. Simple counting process N : () — ZE* and arrival process S : Q) — RY are inverse processes, i.e.
{Sn <t} ={Ni>n}.

Proof. Let w € {S, <t}, then Ng = n by definition. Since N is a non-decreasing process, we have N; >
N; =n. Conversely, let w € {N; > n}, then it follows from definition that S, <t O



Corollary 1.5. For arrival instants S : Q — RN associated with a counting process N : Q0 — Z%' we have
{Su<t,Spp1 >t} ={Ny=n}foralln € Z, and t € Ry.

Proof. 1tis easy to see that {S,11 >t} = {S,41 <t} = {Ni >n+1}°={N; <n+1}. Hence,

{Nt:n}:{Nt>n,Nt<n+1}: {gn gt,§n+1 >t}.

O
Lemma 1.6. Let F,(x) be the distribution function for Sy, then P,(t) & P{N; = n} = F,(t) — F,;1(t).
Proof. It suffices to observe that following is a union of disjoint events,
{Sn <t} ={Su<t,5001 >t} U {8y <t,5041 <t}
O

2 IID exponential inter-arrival times characterization

Proposition 2.1. The counting process N : (3 — ZE* associated with a simple Poisson point process S : Q) — RN
is Markov.

Proof. We define the event space J; £ o(N; : s < t) as the history of the process until time t € Ry. Then,
from the independent increment property of Poisson processes, we have for any historical event Hs € J

P({Ny=n} | Hyn {Ns =k}) = P({Ni — Ny = n —k} | Hy N {Ns = k}) = P({N; = n} | {Ns =k}).

For a homogeneous Poisson point process, the process is homogeneously Markov with P({N; = n} | {N; =k}) =

CA(t—s) (A(t—s))nk
P{N(t—s) =n—k} = M=) A=, O
Theorem 2.2. The counting process N : (3 — ZE* associated with a simple Poisson point process S : Q0 — R is
strongly Markov.

Proposition 2.3. A simple counting process N : () — Z]_If’ is a homogeneous Poisson process with a finite positive
rate A, iff the inter-arrival time sequence X : QO — RN are i.i.d. random variables with an exponential distribution of
rate A.

Proof. We first assume the i.i.d. exponentially distributed inter-arrival times to show that for the simple
counting process N and each positive real t € IR, the random variable N; is Poisson with parameter At,
and hence N is homogeneous Poisson with rate A from the equivalence 7i_ in Theorem ??.

For the converse, let N be a simple homogeneous Poisson point process on half-line with rate A. From
equivalence iii_ in Theorem ??, we obtain for any positive integer ¢,

P{X; >t} =P{N; =0} =e M.

It suffices to show that inter-arrivals time sequence X : ) — R is i.i.d. . We can show that N is Markov
process with strong Markov property. Since the sequence of ordered points S : Q — RY is a sequence of
stopping times for the counting process, it follows from the strong Markov property of this process that
(N3, — N3, :t>0) is independent of ¢(Ns : s < Sy) and hence of S, and Ns, . Further, we see that

Xp1 =inf{t>0:Ng ,—Ng =1}.

It follows that X : O — RY is an independent sequence. For homogeneous Poisson point process, we have
Ng .4 — Ng = Ntin distribution, and hence X,,,1 has same distribution as X; for each n € IN.
O

For many proofs regarding Poisson processes, we partition the sample space with the disjoint events
{N¢ =n} for n € Z . We need the following lemma that enables us to do that.



Lemma 2.4. For any finite time t > 0, a Poisson process is finite almost surely.
Proof. By strong law of large numbers, we have

. Sn 1
nh_r)r;og =E[Xy]= 1 as

Fix t > 0 and we define a sample space subset M = {w € Q: N(w,t) = c0}. For any w € M, we have
Su(w) <t for all n € N. This implies limsup,, 57” =0and w ¢ {limn Sn—” = %} Hence, the probability
measure for set M is zero. 0

2.1 Distribution functions

Lemma 2.5. Moment generating function of arrival times S, is

/\7’!
: e, E<A
Mg (t) =E[e""] = {x—t) o

~ ~ k
Lemma 2.6. Distribution function of Sy, is given by F,(t) = P{S, <t} =1—e My} ()}f!) :
Theorem 2.7. Density function of S, is Gamma distributed with parameters n and . That is,

_ AR s
fn(s)— (7’1—1)! e /\'

Theorem 2.8. For each t > 0, the distribution of Poisson process N; with parameter A is given by

P{Ni=n)} = e_’\t%.

Further, E[N;| = At, explaining the rate parameter A for Poisson process.
Proof. Result follows from density of S, and recognizing that P, (t) = F,(t) — F,.1(t). O

Corollary 2.9. Distribution of arrival times Sy, is

Falt) = Y Pi(1), Y Fat) =EN;.

j=n neN

Proof. First result follows from the telescopic sum and the second from the following observation.

Y E(t)=E Y 1{N;>n}= Y P{N;>n}=EN,
nelN nelN nelN

O

A Poisson process is not a stationary process. That is, the finite dimensional distributions are not shift
invariant. This is clear from looking at the first moment [EN; = At, which is linearly increasing in time.
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