
Lecture-27: Poisson process on the half-line

1 Simple point processes on the half-line

A stochastic process defined on the half-line N : Ω → Z
R+
+ is a counting process if

1. N0 = 0, and

2. for each ω ∈ Ω, the sample path N(ω) : R+ → Z+ is non-decreasing, integer valued, and right con-
tinuous function of time t ∈ R+.

Each discontinuity of the sample path of the counting process can be thought of as a jump of the process, as
shown in Figure 1. A simple counting process has the unit jump size almost surely. General point processes
in higher dimension don’t have any inter-arrival time interpretation.
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Figure 1: Sample path of a simple counting process.

Lemma 1.1. A counting process N : Ω → Z
R+
+ has finitely many jumps in a finite interval (0, t] almost surely.

Definition 1.2. The points of discontinuity are also called the arrival instants of the counting process N.
The nth arrival instant is a random variable denoted S̃n : Ω → R+, defined inductively as

S̃0 ≜ 0, S̃n ≜ inf{t ⩾ 0 : Nt ⩾ n} , n ∈ N.

Definition 1.3. The inter arrival time between (n − 1)th and nth arrival is denoted by Xn and written as
Xn ≜ S̃n − S̃n−1.

Remark 1. For a simple point process, we have P{Xn = 0} = P{Xn ⩽ 0} = 0.

Lemma 1.4. Simple counting process N : Ω → Z
R+
+ and arrival process S̃ : Ω → RN

+ are inverse processes, i.e.{
S̃n ⩽ t

}
= {Nt ⩾ n} .

Proof. Let ω ∈
{

S̃n ⩽ t
}

, then NS̃n
= n by definition. Since N is a non-decreasing process, we have Nt ⩾

NS̃n
= n. Conversely, let ω ∈ {Nt ⩾ n}, then it follows from definition that S̃n ⩽ t.
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Corollary 1.5. For arrival instants S̃ : Ω → RN
+ associated with a counting process N : Ω → Z

R+
+ we have{

S̃n ⩽ t, S̃n+1 > t
}
= {Nt = n} for all n ∈ Z+ and t ∈ R+.

Proof. It is easy to see that
{

S̃n+1 > t
}
=

{
S̃n+1 ⩽ t

}c
= {Nt ⩾ n + 1}c = {Nt < n + 1}. Hence,

{Nt = n} = {Nt ⩾ n, Nt < n + 1} =
{

S̃n ⩽ t, S̃n+1 > t
}

.

Lemma 1.6. Let Fn(x) be the distribution function for Sn, then Pn(t)≜ P{Nt = n} = Fn(t)− Fn+1(t).

Proof. It suffices to observe that following is a union of disjoint events,{
S̃n ⩽ t

}
=

{
S̃n ⩽ t, S̃n+1 > t

}
∪
{

S̃n ⩽ t, S̃n+1 ⩽ t
}

.

2 IID exponential inter-arrival times characterization

Proposition 2.1. The counting process N : Ω → Z
R+
+ associated with a simple Poisson point process S : Ω → RN

+
is Markov.

Proof. We define the event space Ft ≜ σ(Ns : s ⩽ t) as the history of the process until time t ∈ R+. Then,
from the independent increment property of Poisson processes, we have for any historical event Hs ∈ Fs

P({Nt = n}
∣∣ Hs ∩ {Ns = k}) = P({Nt − Ns = n − k}

∣∣ Hs ∩ {Ns = k}) = P({Nt = n}
∣∣ {Ns = k}).

For a homogeneous Poisson point process, the process is homogeneously Markov with P({Nt = n}
∣∣ {Ns = k}) =

P{N(t − s) = n − k} = e−λ(t−s) (λ(t−s))n−k

(n−k)! .

Theorem 2.2. The counting process N : Ω → Z
R+
+ associated with a simple Poisson point process S : Ω → RN

+ is
strongly Markov.

Proposition 2.3. A simple counting process N : Ω →Z
R+
+ is a homogeneous Poisson process with a finite positive

rate λ, iff the inter-arrival time sequence X : Ω → RN
+ are i.i.d. random variables with an exponential distribution of

rate λ.

Proof. We first assume the i.i.d. exponentially distributed inter-arrival times to show that for the simple
counting process N and each positive real t ∈ R+, the random variable Nt is Poisson with parameter λt,
and hence N is homogeneous Poisson with rate λ from the equivalence ii in Theorem ??.

For the converse, let Nt be a simple homogeneous Poisson point process on half-line with rate λ. From
equivalence iii in Theorem ??, we obtain for any positive integer t,

P{X1 > t} = P{Nt = 0} = e−λt.

It suffices to show that inter-arrivals time sequence X : Ω → RN
+ is i.i.d. . We can show that N is Markov

process with strong Markov property. Since the sequence of ordered points S̃ : Ω → RN
+ is a sequence of

stopping times for the counting process, it follows from the strong Markov property of this process that
(NS̃n+t − NS̃n

: t ⩾ 0) is independent of σ(Ns : s ⩽ S̃n) and hence of S̃n and NS̃n
. Further, we see that

Xn+1 = inf
{

t > 0 : NS̃n+t − NS̃n
= 1

}
.

It follows that X : Ω → RN
+ is an independent sequence. For homogeneous Poisson point process, we have

NS̃n+t − NS̃n
= Nt in distribution, and hence Xn+1 has same distribution as X1 for each n ∈ N.

For many proofs regarding Poisson processes, we partition the sample space with the disjoint events
{Nt = n} for n ∈ Z+. We need the following lemma that enables us to do that.
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Lemma 2.4. For any finite time t > 0, a Poisson process is finite almost surely.

Proof. By strong law of large numbers, we have

lim
n→∞

Sn

n
= E[X1] =

1
λ

a.s.

Fix t > 0 and we define a sample space subset M = {ω ∈ Ω : N(ω, t) = ∞}. For any ω ∈ M, we have
Sn(ω) ⩽ t for all n ∈ N. This implies limsupn

Sn
n = 0 and ω ̸∈

{
limn

Sn
n = 1

λ

}
. Hence, the probability

measure for set M is zero.

2.1 Distribution functions

Lemma 2.5. Moment generating function of arrival times S̃n is

MS̃n
(t) = E[etS̃n ] =

{
λn

(λ−t)n , t < λ

∞, t ⩾ λ.

Lemma 2.6. Distribution function of S̃n is given by Fn(t)≜ P
{

S̃n ⩽ t
}
= 1 − e−λt ∑n−1

k=0
(λt)k

k! .

Theorem 2.7. Density function of S̃n is Gamma distributed with parameters n and λ. That is,

fn(s) =
λ(λs)n−1

(n − 1)!
e−λs.

Theorem 2.8. For each t > 0, the distribution of Poisson process Nt with parameter λ is given by

P{Nt = n)} = e−λt (λt)n

n!
.

Further, E[Nt] = λt, explaining the rate parameter λ for Poisson process.

Proof. Result follows from density of S̃n and recognizing that Pn(t) = Fn(t)− Fn+1(t).

Corollary 2.9. Distribution of arrival times S̃n is

Fn(t) = ∑
j⩾n

Pj(t), ∑
n∈N

Fn(t) = ENt.

Proof. First result follows from the telescopic sum and the second from the following observation.

∑
n∈N

Fn(t) = E ∑
n∈N

1{Nt ⩾ n} = ∑
n∈N

P{Nt ⩾ n} = ENt.

A Poisson process is not a stationary process. That is, the finite dimensional distributions are not shift
invariant. This is clear from looking at the first moment ENt = λt, which is linearly increasing in time.
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