Lecture-21: Recurrent and transient states

1 Recurrence and Transience

We will consider a random sequence X : Q — X%+ with initial state Xy = x € X and the kth hitting times to
state y for all k € N denoted by 7 = T){g}’k inductively defined as 7 £ inf {n > 7;_1 : X, = y} where 15 = 0.
We define the inter-return time sequence H : QO — NN as H, £ H ){g - T — Tp_1 forall k € IN.
Definition 1.1. For a random sequence X : Q) — X%+ with initial state Xy = x,

(i) the probability of hitting state i eventually is denoted by fy, = P, {1; < o0}, and

(ii) the probability of first visit to state y at time 1 € IN is denoted by f,E;’) £ P {m =n}.
Remark 1. We can write the finiteness of hitting time 7y as the disjoint union {17 < 00} = Uyen {11 =n}.

Therefore, fxy = YneN fJE;)

Remark 2. 1f fyy = Py{Ty < oo} =1 for all initial states x € X, then 7y is almost surely finite and hence a
stopping time.

Definition 1.2. From the initial state x, the distribution

(i) for the first hitting time to state y is called the first passage time distribution and denoted by (( f,g;l) :
ne€N),1— fy),and
(if) for the first return time to state x is called the first recurrence time distribution and denoted by

(% :n €N, T~ fia).
Definition 1.3. A state y € X is called recurrent if f,;, = 1, and is called transient if f,, <1.
Definition 1.4. For any state y € X, the mean recurrence time is denoted by y,y = E, 7.

Remark 3. The mean recurrence time for any transient state is infinite. For any recurrent state y € X, we write

Tt = T 1 {7 <oo} = LneN "1 {7 =y} almost surely, and the mean recurrence time is given by pyy =Y ,en 7 fy(; ),

Definition 1.5. For a recurrent state y € X,
(i) if the mean recurrence time is finite, then the state y is called positive recurrent, and
(if) if the mean recurrence time is infinite, then the state y is called null recurrent.

Proposition 1.6. For a homogeneous discrete Markov chain X : Q — X%+, we have

fx]/f;(y_l(l _fyy), k€ NN.

Proof. We can write the event of zero visits to state y as {N,(c0) =0} = {1y = co}. Further, we can write
the event of m visits to state y as

Px{Ny<oo)—k}—{l_f"y' I~

{Ny(c0) =k} = {1 <00} N {Tpy1 =00} = ﬂ;{:l {Hj <o} N{Hgy =00}, keN.
Recall that H : QO — NN is an independent random sequence with subsequence (H; : k > 2) identically
distributed, with Py {H; = n} = P, {7y = n} for all j > 2. Therefore, we get

k

Py {Ny(o0) =k} =Py {H; < m}QPx {Hj < 00} Py {Hpy1 = o0} :fxyij*l(l — foy)-
p



Corollary 1.7. For a homogeneous Markov chain X, we have Py { Ny(c0) < 0o} = Le <1} (1- fxy)]]-{fwzl}-

Proof. We can write the event { Ny(co) < co} as disjoint union of events { Ny (co) =k}, to get the result. [

Remark 4. For a time homogeneous Markov chain X : () — XZ+ , we have
(i) Py {Ny(c0) =00} :fxy]l{fw:l}, and
(11) Py {Ny(oo) = OO} = ]l{fyyzl}.

Corollary 1.8. The mean number of visits to state y, starting from a state x is JExNy(c0) = %l{fyyd} +
OOH{ny>O'fyy:1}'

Remark 5. For any state y € X, we have E, N, (c0) = %l{fyy<1} + °°]l{fw:1}' That is, the mean number

of visits to initial state y is finite iff the state y is transient.

Remark 6. In particular, this corollary implies the following consequences.

i A transient state is visited a finite amount of times almost surely. This follows from Corollary [1.7} since
Py {Ny(c0) < 0o} =1 for all transient states y € X and any initial state x € X.

ii. A recurrent state is visited infinitely often almost surely. This also follows from Corollary since
P, {Ny(o0) < 0o} = 0 for all recurrent states y € X.

iii_ In a finite state Markov chain, not all states may be transient.

Proof. To see this, we assume that for a finite state space X, all states y € X are transient. Then, we
know that Ny (co) is finite almost surely for all states y € X. It follows that, for any initial state x € X

0< Px{ 2 Ny(c0) = oo} = Py(Uyex {Ny(00) = 0}) < Z Py {Ny(c0) =00} =0.

yeX yeX

It follows that -, c x Ny (o0) is also finite almost surely for all states y € X for finite state space X. How-
ever, we know that ) cx Ny(0) = Yrew Lyex 1{x,—y} = oo This leads to a contradiction. O

Proposition 1.9. For a homogeneous DTMC X : Q — X%+, a state y € X is recurrent iff Y pen py;) = oo, and

transient iff Y yeN Pg;) < oo,

Proof. Recall that if the mean recurrence time to a state y € X is E,; Ny () = Y yenN py;) finite then the state

is transient and infinite if the state is recurrent. O
no (k)

Corollary 1.10. For a transient state y € X, the following limits hold limy, o pg(f;) =0, and limy 0 ):":% =0.

Proof. For a transient state y € X and any state x € X, we have ExNy () = }¥,en p,((';) < 00. Since the series
(n)

sum is finite, it implies that the limiting terms in the sequence lim;, e px}; = 0. Further, we can write

n (k)
Yiq p,((];) < ExNy(c0) < M for some M € N and hence lim;; e Z’m% =0. O

Lemma 1.11. For any state y € X, let H : QO — IN™ be the sequence of almost surely finite inter-visit times to state
y,and Ny(n) = Y4 _1 1x,—y) be the number of visits to state y in n times. Then, Ny(n) + 1is a finite mean stopping
time with respect to the sequence H.



Proof. We first observe that N, (1) +1 < n + 1 and hence has a finite mean for each n € IN. Further, we
observe that {Ny )+1= k} can be completely determined by observing Hj, ..., H, since

{Ny(n) +1=k} = {ZH H<ZH}€O'H1, . Hy).

n k)
Theorem 1.12. Let x,y € X be such that fy, =1 and y is recurrent. Then, lim, e @ = ]}W
Proof. Let y € X be recurrent. The proof consists of three parts. In the first two parts, we will show that
starting from the state y, we have the limiting empirical average of mean number of visits to state y is
limy, 0o %IEyNy(n) = le In the third part, we will show that for any starting state x € X such that fxy =1,

we have the limiting empirical average of mean number of visits to state y is lim,—co %IE «Ny(n) = L

Hyy

Lower bound: We observe that Ny, (1) + 1 is a stopping time with respect to inter-visit times H from Lemma
(n)+1

Further, we have Z;\[:yl Hj > n. Applying Wald’s Lemma to the random sum Z;.\]:yl(n)ﬂ Hj , we get

n k)
E, (Ny(n) + 1)py,y > n. Taking limits, we obtain liminf, ey Zk:% > %yy

Upper bound: Let Xy = y and consider a fixed positive integer M € IN. Then H is i.i.d. and we define
truncated recurrence times H : QO — [M]N forall j € N as H; £MA H;. It follows that the sequence H

isi.i.d. and H; < H; for all j € N. We define the mean of the truncated recurrence times as fiy £E,H;.
From the monoton1c1ty of truncation, we get fi,y < piyy.

We define the random variable T, = E 1 H for all k € IN, and T, < 7, for all k € IN. We can define
the associated counting process that Counts the number of truncated recurrences in first n steps as
Ny(n) £ Yken Lig<ny for all m € N. We conclude that Ny(n) + 1 is a stopping time with respect to
i.id. process H, and Ny(n) > Ny(n) sample path wise. Further, we have

Ny(n)+1

]; Hj = TR, ()41 = Ty () T HRy (11 <+ M.

Applying Wald’s Lemma to stopping time N, (1) + 1 with respect to i.i.d. sequence H and stopping
time Ny (1) 4 1 with respect to i.i.d. sequence H, and monotonicity of expectation, we get

lEy(Ny(”) + 1)ﬁyy < ]Ey(Ny( n) + 1)Vyy n+ M.

Taking limits, we obtain limsup,, Lie ;pw <= VW Letting M grow arbitrarily large, we obtain the
upper bound.
Starting from x: Further, we observe that p,((ky) = fxy pyy Since 1 = fyy = Y eN fg), we have

n—1
pry—zzfxy Pyy—;)?’yy Z f(k ’ Zpéy Zpyy )3 fxy

k—s=1 5=0 k>n—s

. ® s® o
Since the series } o fry’ converges, we get limy, o0 % = lim,_, %
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