Lecture-05: Stopping Times

1 Stopping Times

Let (O, J,P) be a probability space, and F, = (F; C F: t € T) be a filtration on this probability space for
an ordered index set T C IR considered as time.

Definition 1.1. A random variable 7: () — T defined on a probability space (Q), F, P) is called a stopping
time with respect to a filtration F, if 7 is almost surely finite and the event {t <t} € F; forall t € T.

Remark 1. Let F, be a natural filtration associated with a real-valued time-evolving random process
X : Q — XT defined on the probability space (Q,F,P). Thatis, F; = 0(Xs,s < t) for all times t € T.

Remark 2. A stopping time 7 : () — T for the process X is an almost surely finite random variable such
that if we observe the process X sequentially, then the event {7 < t} can be completely determined by
the sequential observation (X;,s < t) until time ¢.

Remark 3. The intuition behind a stopping time is that its realization is determined by the past and
present events but not by future events. That is, given the history of the process until time t, we can tell
whether the stopping time is less than or equal to f or not. In particular, E[1; <y | Fi] = L,y is either
one or zero.

Definition 1.2. For a process X : ) — XT and any Borel measurable set A € B(X), first hitting time to
states A by the process X is denoted by 74 : O — T U {0}, defined as 7§ £ inf{t € T: X; € A}.

Example 1.3. Let the process X be a progressively measurable process adapted to a filtration J,.
Then, we observe that for any t € T the event

{Tf? < t} = {X; € Aforsomes <t} =mqo (X)HA) € mqo (—oo,t] x Fy = F;.

It follows that, T¥ is a stopping time with respect to filtration F, if T is finite almost surely.

Theorem 1.4. Consider an almost surely finite random variable T : Q) — IN U {oo} and a filtration Fo = (F,, C
F :n € IN) defined on the probability space (Q),F,P). The random variable T is a stopping time with respect to
this filtration F, iff the event {t =n} € F,, forall n € IN.

Proof. We first show that if {T =n} € F, for all n € N, then 7 is a stopping time. It follows from the fact
that {t <n} =Uyu<, {Tt=m} € F, foreach n € N.

For the converse, we assume that 7 is a stopping time and fix an n € N. Then {T <n} € F, and
{T <n—1} € F,. The result follows from the closure of an event space under complements and inter-
sections, which implies that {T=n} = {t<n}\{t<n -1} € F,. O

Example 1.5. Consider a random sequence X : O — XN with the natural filtration Fo and a mea-
surable set A € B(X). If the first hitting time 74 : Q — IN U {co} for the sequence X to hit set

A is almost surely finite, then T4 is a stopping time. For this case, we can write {T4 =n} =

NI—H{ Xy ¢ A} N {X, € A} € Fy, for eachn € N.

Theorem 1.6. Consider an almost surely finite random variable T : Q) — T U {oo} and a filtration F, defined on
the probability space (Q),F,P) where T is a discrete random variable. The random variable T is a stopping time
with respect to this filtration F, iff the event {Tt =t} € Fy forall t € T.



1.1 Properties of stopping time

Lemma 1.7. Let 71,7 : Q) — T be stopping times on probability space (Q,F, P) with respect to filtration F,.
Then the following hold true.

i min{T, 7} and max{w, 7o} are stopping times.
ii_ IfP{ty € I} =1and P{m, € I} =1 for a countable I C T, then T + Ty is a stopping time.
Proof. Let Fo = (F;:t € T) be a filtration, and 73, 7 associated stopping times.

i- Result follows since for any t € T, the event {min{7, 7} >t} = {1y >t} N {m >t} € F}, and the
event {max{7, n} <t} ={n <t}N{n <t} e F.

i It suffices to show that the event {7y + 7p <t} € F; for any t € I = IN. We fix n € I, and it follows
from the closure of event space F,, under countable unions and intersection, that {11 + ©» <n} =
Umnen{t <n—m,mp <m} € Fy.

O

Lemma 1.8. Consider a random walk S : QO — RN with i.i.d. step-sizes X : Q — RN having finite E | X1|. Let
T : Q) — IN be a random variable independent of the step-size sequence such that IE |t| < co. Then,

ES; = EX;FEt.

Proof. Recall that the natural filtration of the random walk and the step-sizes are identical, and we
denote it by F,. We know that P(U,en {7 = n}) = 1 and recall that conditional expectation of S given
the discrete random variable 7 is given by E[St | 0(7)] = L,en E[St | T = n]1{r_y}. Since S, = ¥/ 1 X,
we obtain from the tower property and linearity of conditional expectation,

ES. = EE[Sclo(v)] =Bl lena[xi 7= 1] L],

Since the i.i.d. random sequence X is independent of random variable 7, we get E[X; | T = n] = EXj,
and it follows that ESt = EX1E[Y, cn 11— ] = EX;ET. O

Lemma 1.9 (Wald). Consider a random walk S : Q — RN with ii.d. step-sizes X : QO — RN having finite
E|Xq|. Let T: Q) — IN be a finite mean stopping time adapted to the natural filtration F, of the step-size sequence
X. Then,

ES: =EX;ET.

Remark 4. We first examine why the proof of Lemma breaks down for Lemma when 7 is a
stopping time with respect to natural filtration of X. In the later case, it is not clear what is the value
E[X;|T = n]? For example, consider the i.i.d. sequence X € {0,1}N with P{X; =1} = p and stopping
T2 inf{n € N: X; = 1} adapted to natural filtration of X. In this case, fori < T

E[Xi|t=n] =1, #EX;=p.
However, we do notice that the result somehow magically continues to hold, as

ES: =E[Y L] =1=EX;Er ="
nelN p

Proof. Recall that the filtration generated by the random walk and the step-sizes are identical, and de-
noted by JF,. From the independence of step sizes, it follows that X, is independent of JF,,_;. Since
T is a stopping time with respect to random walk S, we observe that {t>n} ={t>n—-1} € F,_4,
and hence it follows that random variable X, and indicator 1, are independent and [E (X, 1 {T>n}] =
EX1E1{;>,). Therefore,

EY Xy =E Y Xulpsy = Y EX,E []1{@,1}} — EX,F

n=1 nelN nelN

= E[X,]E[7].

Y Lsny

T
— nelN

We exchanged limit and expectation in the above step, which is not always allowed. We were able to
do it by the application of dominated convergence theorem. O



1.2 Stopped c-algebra

We wish to define an event space consisting information of the process until a random time 7. For a
stopping time 7 : Q) — T, what we want is something like o (X; : s < 7). But that doesn’t make sense,
since the random time 7 is a random variable itself. When 7 is a stopping time, the event {7 < t} € ;.
What makes sense is the set of all events whose intersection with {7 < ¢} belongs to the event subspace
Fiforallt > 0.

Definition 1.10. For a stopping time 7 : (3 — T adapted to the filtration J,, the stopped c-algebra is
defined
Fr2{AE€Tn: AN{T <t} €Fforallt € T}.

Proposition 1.11. The collection of events Fr is a c-algebra.
Proof. It suffices to verify the following three conditions.
(i) Since 7 is a stopping time, it follows that () € J7.
(ii) Let A€ Fr, then AN{T <t} € Frand we canwrite AN {t <t} ={t <t} \ (ANn{r <t}) € Fp.
(iii) From closure of ; under countable unions, it follows that F; is closed under countable unions.
O

Remark 5. Informally, the event space J; has information up to the random time 7. That is, it is a
collection of measurable sets that are determined by the process until time 7.

Remark 6. Any measurable set A € F canbe writtenas A = (AN{t <t})U(AN{t > t}). All such sets
Asuchthat AN {T <t} € F;forall t € T is a member of the stopped o-algebra. We note that any event
A € F; does not guarantee that A N {7 > t} € F;. Otherwise, Fr = F.

Lemma 1.12. Consider a random variable Y : O — R, and a stopping time T : QO — T C R4 with respect
to filtration F defined on probability space (Q0,F,P). Then Y is I measurable if and only if Y1 <4y is T}
measurable forall t € T.

Proof. The collection of events {Y~!(—oo,y] N7 !(—0o,t] € F:y € R} generate the event space gen-
erated by the random variable Y1 (.. It follows that Y is Jr measurable if and only if {Y <y} N
{t<t} eFforallt e R. O

Definition 1.13. Consider a process X : Q) — XT adapted to a filtration F,, and a stopping time 7: Q — T
for the process X, then the stopped process X7 is defined as X7 £ X, forallt € T.

Remark 7. 1f X : Q — XT is progressively measurable, then the stopped process X7 is also progres-
sively measurable and adapted to the same filtration. This follows from the fact that (X7)~!(—o0,x] N
(—00,5] x Q= (X"T)"1(—00,x] € B((—00,5]) @ F; forall s € T.

Lemma 1.14. Let 7,7y, T2 be stopping times, and X : (3 — XT a random process, all adapted to a filtration F,.
Then, the following are true.

(i) If 1 < 1 almost surely, then T, C F,.

(i) o(t) C Fr.
(iii) If X is progressively measurable, then o(X+) C Fr.
Proof. Recall, that for any t > 0, we have {1t <t} € F;.

(i) From the hypothesis 71 < 1 a.s., we get {1 <t} C {7y <t} a.s., where both events belong to F;
since they are stopping times. The result follows since for any A € J7, and t € T, we can write
An{n<t}=An{n <t}n{n <t} e F

(i) Any event A € o(7) is generated by inverse images {7 < s} for s € R. Indeed {7 < s} € F; since
{t<sin{r <t} ={r<sAt} €F, forallteT.

(iif) If X is progressive, then so is the stopped process X* and adapted to the same filtration F,. It
follows that X1 (r<t) is F; measurable for all £ € T, and hence X; is ¥ measurable.

O



Theorem 1.15. Let X : Q — X7 be a random process adapted to filtration Fs. If X is progressive and X7 be the
stopped process for a stopping time T : Q) — T for X, then o(X") C Fr.

Proof. We first show that the stopped process X7 is progressive. Let A € B(IR) be a Borel measurable set
and s € T. We observe that Q = {1t <s} U {1 >s} and (X7)"1(A) = {(w,w) : u < 1,Xy € A}, to write
the intersection

(XT)H(A) N (—00,5] x Q= (XT)"H(A)N(—00,5] x {T <s}U(X*)H(A)N(—00,5] x {T > 5} € B((—00,5]) @ Fs.

We next show that ¢(X") C F; for any process X adapted to F, and a stopping time 7 for X. It
suffices to show that for any s € T and x € IR, the event X;AlT(—oo,x] € F+. To this end, we observe that
for any t € T, we have X_,L.(—co,x] N {T <t} € F}.

O
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