
Lecture-05: Stopping Times

1 Stopping Times

Let (Ω,F, P) be a probability space, and F• = (Ft ⊆ F : t ∈ T) be a filtration on this probability space for
an ordered index set T ⊆ R considered as time.

Definition 1.1. A random variable τ : Ω → T defined on a probability space (Ω,F, P) is called a stopping
time with respect to a filtration F• if τ is almost surely finite and the event {τ ⩽ t} ∈ Ft for all t ∈ T.

Remark 1. Let F• be a natural filtration associated with a real-valued time-evolving random process
X : Ω → XT defined on the probability space (Ω,F, P). That is, Ft = σ(Xs, s ⩽ t) for all times t ∈ T.

Remark 2. A stopping time τ : Ω → T for the process X is an almost surely finite random variable such
that if we observe the process X sequentially, then the event {τ ⩽ t} can be completely determined by
the sequential observation (Xs, s ⩽ t) until time t.
Remark 3. The intuition behind a stopping time is that its realization is determined by the past and
present events but not by future events. That is, given the history of the process until time t, we can tell
whether the stopping time is less than or equal to t or not. In particular, E[1{τ⩽t} | Ft] = 1{τ⩽t} is either
one or zero.

Definition 1.2. For a process X : Ω → XT and any Borel measurable set A ∈ B(X), first hitting time to
states A by the process X is denoted by τA

X : Ω → T ∪ {∞}, defined as τA
X ≜ inf{t ∈ T : Xt ∈ A} .

Example 1.3. Let the process X be a progressively measurable process adapted to a filtration F•.
Then, we observe that for any t ∈ T the event{

τA
X ⩽ t

}
= {Xs ∈ A for some s ⩽ t} = πΩ ◦ (Xt)−1(A) ∈ πΩ ◦ (−∞, t]× Ft = Ft.

It follows that, τX
A is a stopping time with respect to filtration F• if τX

A is finite almost surely.

Theorem 1.4. Consider an almost surely finite random variable τ : Ω → N ∪ {∞} and a filtration F• = (Fn ⊆
F : n ∈ N) defined on the probability space (Ω,F, P). The random variable τ is a stopping time with respect to
this filtration F• iff the event {τ = n} ∈ Fn for all n ∈ N.

Proof. We first show that if {τ = n} ∈ Fn for all n ∈ N, then τ is a stopping time. It follows from the fact
that {τ ⩽ n} = ∪m⩽n {τ = m} ∈ Fn for each n ∈ N.

For the converse, we assume that τ is a stopping time and fix an n ∈ N. Then {τ ⩽ n} ∈ Fn and
{τ ⩽ n − 1} ∈ Fn. The result follows from the closure of an event space under complements and inter-
sections, which implies that {τ = n} = {τ ⩽ n} \ {τ ⩽ n − 1} ∈ Fn.

Example 1.5. Consider a random sequence X : Ω → XN with the natural filtration F• and a mea-
surable set A ∈ B(X). If the first hitting time τA

X : Ω → N ∪ {∞} for the sequence X to hit set
A is almost surely finite, then τA

X is a stopping time. For this case, we can write
{

τA
X = n

}
=

∩n−1
k=1 {Xk /∈ A} ∩ {Xn ∈ A} ∈ Fn for each n ∈ N.

Theorem 1.6. Consider an almost surely finite random variable τ : Ω → T ∪ {∞} and a filtration F• defined on
the probability space (Ω,F, P) where T is a discrete random variable. The random variable τ is a stopping time
with respect to this filtration F• iff the event {τ = t} ∈ Ft for all t ∈ T.
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1.1 Properties of stopping time

Lemma 1.7. Let τ1,τ2 : Ω → T be stopping times on probability space (Ω,F, P) with respect to filtration F•.
Then the following hold true.

i min{τ1,τ2} and max{τ1,τ2} are stopping times.

ii If P{τ1 ∈ I} = 1 and P{τ2 ∈ I} = 1 for a countable I ⊆ T, then τ1 + τ2 is a stopping time.

Proof. Let F• = (Ft : t ∈ T) be a filtration, and τ1,τ2 associated stopping times.

i Result follows since for any t ∈ T, the event {min{τ1,τ2} > t} = {τ1 > t} ∩ {τ2 > t} ∈ Ft, and the
event {max{τ1,τ2}⩽ t} = {τ1 ⩽ t} ∩ {τ2 ⩽ t} ∈ Ft.

ii It suffices to show that the event {τ1 + τ2 ⩽ t} ∈ Ft for any t ∈ I = N. We fix n ∈ I, and it follows
from the closure of event space Fn under countable unions and intersection, that {τ1 + τ2 ⩽ n} =⋃

m∈N {τ1 ⩽ n − m,τ2 ⩽ m} ∈ Fn.

Lemma 1.8. Consider a random walk S : Ω → RN with i.i.d. step-sizes X : Ω → RN having finite E |X1|. Let
τ : Ω → N be a random variable independent of the step-size sequence such that E |τ| < ∞. Then,

ESτ = EX1Eτ.

Proof. Recall that the natural filtration of the random walk and the step-sizes are identical, and we
denote it by F•. We know that P(∪n∈N {τ = n}) = 1 and recall that conditional expectation of Sτ given
the discrete random variable τ is given by E[Sτ | σ(τ)] = ∑n∈N E[Sτ | τ = n]1{τ=n}. Since Sn = ∑n

i=1 Xi,
we obtain from the tower property and linearity of conditional expectation,

ESτ = E[E[Sτ |σ(τ)]] = E[ ∑
n∈N

n

∑
i=1

E[Xi | τ = n]1{τ=n}].

Since the i.i.d. random sequence X is independent of random variable τ, we get E[Xi | τ = n] = EX1,
and it follows that ESτ = EX1E[∑n∈N n1{τ=n}] = EX1Eτ.

Lemma 1.9 (Wald). Consider a random walk S : Ω → RN with i.i.d. step-sizes X : Ω → RN having finite
E |X1|. Let τ : Ω → N be a finite mean stopping time adapted to the natural filtration F• of the step-size sequence
X. Then,

ESτ = EX1Eτ.

Remark 4. We first examine why the proof of Lemma 1.8 breaks down for Lemma 1.9 when τ is a
stopping time with respect to natural filtration of X. In the later case, it is not clear what is the value
E[Xi|τ = n]? For example, consider the i.i.d. sequence X ∈ {0,1}N with P{Xi = 1} = p and stopping
τ ≜ inf{n ∈ N : Xi = 1} adapted to natural filtration of X. In this case, for i ⩽ τ

E[Xi|τ = n] = 1{i=n} ̸= EXi = p.

However, we do notice that the result somehow magically continues to hold, as

ESτ = E[ ∑
n∈N

1{τ=n}] = 1 = EX1Eτ =
p
p

.

Proof. Recall that the filtration generated by the random walk and the step-sizes are identical, and de-
noted by F•. From the independence of step sizes, it follows that Xn is independent of Fn−1. Since
τ is a stopping time with respect to random walk S, we observe that {τ ⩾ n} = {τ > n − 1} ∈ Fn−1,
and hence it follows that random variable Xn and indicator 1{τ⩾n} are independent and E[Xn1{τ⩾n}] =
EX1E1{τ⩾n}. Therefore,

E
τ

∑
n=1

Xn = E ∑
n∈N

Xn1{τ⩾n} = ∑
n∈N

EXnE
[
1{τ⩾n}

]
= EX1E

[
∑

n∈N

1{τ⩾n}

]
= E[X1]E[τ].

We exchanged limit and expectation in the above step, which is not always allowed. We were able to
do it by the application of dominated convergence theorem.
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1.2 Stopped σ-algebra

We wish to define an event space consisting information of the process until a random time τ. For a
stopping time τ : Ω → T, what we want is something like σ(Xs : s ⩽ τ). But that doesn’t make sense,
since the random time τ is a random variable itself. When τ is a stopping time, the event {τ ⩽ t} ∈ Ft.
What makes sense is the set of all events whose intersection with {τ ⩽ t} belongs to the event subspace
Ft for all t ⩾ 0.

Definition 1.10. For a stopping time τ : Ω → T adapted to the filtration F•, the stopped σ-algebra is
defined

Fτ ≜ {A ∈ F∞ : A ∩ {τ ⩽ t} ∈ Ft for all t ∈ T} .

Proposition 1.11. The collection of events Fτ is a σ-algebra.

Proof. It suffices to verify the following three conditions.

(i) Since τ is a stopping time, it follows that Ω ∈ Fτ .

(ii) Let A ∈ Fτ , then A ∩ {τ ⩽ t} ∈ Ft and we can write Ac ∩ {τ ⩽ t} = {τ ⩽ t} \ (A ∩ {τ ⩽ t}) ∈ Ft.

(iii) From closure of Ft under countable unions, it follows that Fτ is closed under countable unions.

Remark 5. Informally, the event space Fτ has information up to the random time τ. That is, it is a
collection of measurable sets that are determined by the process until time τ.

Remark 6. Any measurable set A ∈ F can be written as A = (A ∩ {τ ⩽ t})∪ (A ∩ {τ > t}). All such sets
A such that A ∩ {τ ⩽ t} ∈ Ft for all t ∈ T is a member of the stopped σ-algebra. We note that any event
A ∈ Fτ does not guarantee that A ∩ {τ > t} ∈ Ft. Otherwise, Fτ = F.

Lemma 1.12. Consider a random variable Y : Ω → R, and a stopping time τ : Ω → T ⊆ R+ with respect
to filtration F• defined on probability space (Ω,F, P). Then Y is Fτ measurable if and only if Y1{τ⩽t} is Ft
measurable for all t ∈ T.

Proof. The collection of events
{

Y−1(−∞,y] ∩ τ−1(−∞, t] ∈ F : y ∈ R
}

generate the event space gen-
erated by the random variable Y1{τ⩽t}. It follows that Y is Fτ measurable if and only if {Y ⩽ y} ∩
{τ ⩽ t} ∈ Ft for all t ∈ R.

Definition 1.13. Consider a process X : Ω →XT adapted to a filtration F•, and a stopping time τ : Ω → T
for the process X, then the stopped process Xτ is defined as Xτ

t ≜ Xt∧τ for all t ∈ T.

Remark 7. If X : Ω → XT is progressively measurable, then the stopped process Xτ is also progres-
sively measurable and adapted to the same filtration. This follows from the fact that (Xτ)−1(−∞, x] ∩
(−∞, s]× Ω = (Xs∧τ)−1(−∞, x] ∈ B((−∞, s])⊗ Fs for all s ∈ T.

Lemma 1.14. Let τ,τ1,τ2 be stopping times, and X : Ω → XT a random process, all adapted to a filtration F•.
Then, the following are true.

(i) If τ1 ⩽ τ2 almost surely, then Fτ1 ⊆ Fτ2 .

(ii) σ(τ) ⊆ Fτ .

(iii) If X is progressively measurable, then σ(Xτ) ⊆ Fτ .

Proof. Recall, that for any t ⩾ 0, we have {τ ⩽ t} ∈ Ft.

(i) From the hypothesis τ1 ⩽ τ2 a.s., we get {τ2 ⩽ t} ⊆ {τ1 ⩽ t} a.s., where both events belong to Ft
since they are stopping times. The result follows since for any A ∈ Fτ1 and t ∈ T, we can write
A ∩ {τ2 ⩽ t} = A ∩ {τ1 ⩽ t} ∩ {τ2 ⩽ t} ∈ Ft.

(ii) Any event A ∈ σ(τ) is generated by inverse images {τ ⩽ s} for s ∈ R. Indeed {τ ⩽ s} ∈ Fτ since
{τ ⩽ s} ∩ {τ ⩽ t} = {τ ⩽ s ∧ t} ∈ Ft, for all t ∈ T.

(iii) If X is progressive, then so is the stopped process Xτ and adapted to the same filtration F•. It
follows that Xτ1{τ⩽t} is Ft measurable for all t ∈ T, and hence Xτ is Fτ measurable.
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Theorem 1.15. Let X : Ω → XT be a random process adapted to filtration F•. If X is progressive and Xτ be the
stopped process for a stopping time τ : Ω → T for X, then σ(Xτ) ⊆ Fτ .

Proof. We first show that the stopped process Xτ is progressive. Let A ∈B(R) be a Borel measurable set
and s ∈ T. We observe that Ω = {τ ⩽ s} ∪ {τ > s} and (Xτ)−1(A) = {(u,ω) : u ⩽ τ, Xu ∈ A} , to write
the intersection

(Xτ)−1(A)∩ (−∞, s]×Ω= (Xτ)−1(A)∩ (−∞, s]×{τ ⩽ s}∪ (Xs)−1(A)∩ (−∞, s]×{τ > s} ∈B((−∞, s])⊗Fs.

We next show that σ(Xτ) ⊆ Fτ for any process X adapted to F• and a stopping time τ for X. It
suffices to show that for any s ∈ T and x ∈ R, the event X−1

s∧τ(−∞, x] ∈ Fτ . To this end, we observe that
for any t ∈ T, we have X−1

s∧τ(−∞, x] ∩ {τ ⩽ t} ∈ Ft.
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