Lecture-09: Limit Theorems

1 Growth of renewal counting processes

Lemma 1.1. Consider the counting process N : () — Z]E+ associated with i.i.d. inter-renewal time sequence
X:Q— IRH;I with finite mean EX,;, < oo. Let Neo 2 limy_yo0 Ny, then P {No =00} =1.

Proof. Tt suffices to show P {No < 0o} = 0. Since E[X,] < oo, we have P {X,, = o0} =0 and
P{Ne <0} =P | J {Nw<n}=P ) {Sn=00} =P | {Xn=00} < ) P{X,; =00} =0.
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Corollary 1.2. For delayed renewal processes with finite mean of first renewal instant and subsequent inter-
renewal times, P {limHoo NtD = oo} =1

1.1 Strong law for renewal processes

We observed that the number of renewals N; increases to infinity with the length of the duration t. We
will show that the growth of N; is asymptotically linear with time f, and we will find this coefficient of
linear growth of N; with time ¢.

Theorem 1.3 (Strong law). For a renewal counting process N : () — ZE* with ii.d. inter-renewal times
X : Q — RY having a finite mean y, we have
Ni
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lim — = — almost surely.
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Proof. Note that Sy, represents the time of last renewal before ¢, and Sy, 41 represents the time of first
renewal after time ¢. Clearly, we have Sy, <t < Sy,41. Dividing by N;, we get

SNt <t t SNt+1

< 1
N T N; N; M
Since N; increases monotonically to infinity as t grows large, we can apply strong law of large numbers
to the sum Sy, = ZZN:* 1 Xi, to get limy oo Nl: = u almost surely. Hence the result follows. O
Corollary 1.4. For a delayed renewal process with finite inter-arrival durations, lim_, NDt(t) = uip

Example 1.5. Suppose, you are in a casino with infinitely many games. We assume that X : () —
[0,1]N is an i.i.d. uniform sequence where X; is the random probability of win in the game i € IN.
One can continue to play a game or switch to another one. We are interested in a strategy that
maximizes the long-run proportion of wins. Let N(n) denote the number of losses in n plays. Then
the fraction of wins Pyy(n) is given by Py (n) = " N(")

We pick a strategy where any game is selected to play, and continue to be played till the first
loss. We show that lim,,_,. Py (1) = 1 for this proposed strategy. Let T; be the number of times a
game i is played. We observe that the conditional probability mass function for the number of plays
for each game i is geometrically distributed as

E[L(g— |0(X)] =X '(1-X;), keN.
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Figure 1: Time of last renewal

Hence, it follows that T; are i.i.d. random variables with mean ET; = E[E[T; | X;]] = E {%Xl} = oo.
It follows that each loss is a renewal event, and from the strong law of renewal process, we obtain
N(n) 1 1

li = ===
e E[Time till first loss]  ET;

1.2 Wald’s lemma for renewal processes

Basic renewal theorem implies % converges to % almost surely. We are next interested in convergence

of the ratio 4. Note that this is not obvious, since almost sure convergence doesn’t imply convergence
in mean. To illustrate this, we have the following example.

Example 1.6. Consider a Bernoulli random sequence X : Q) — {0,1}" with probability P {X,, = 1} =
%, and another random sequence Y : () — Zﬂf defined as Y,, £ nX,, for n € N. Then, P {Y, =0} =
1— 1. Thatis Y, — 0 as. However, E[Y,] =1 foralln € N. So E[Y,,] — 1.

Even though, basic renewal theorem does NOT imply it, we still have %! converging to % We first

need this technical Lemma.

Proposition 1.7 (Wald’s Lemma for renewal process). Let m : Ry — IRy be the renewal function for a
renewal counting process N : () — ZE* with ii.d. inter-arrival times X : Q — RY having finite mean y =
E[X;] < co. Then, Nt + 1 is a stopping time for the sequence X, and

Ni+1

Y X

i=1

E =u(1+my).

Proof. We observe that for any n € N, the event {N; + 1 = n} belongs to (Xj,..., X,), since

n—1 n—1
{Nt—f—l:n}:{sn,] <t<5n}:{ZXi<t< ZXZ+XH} EO'(Xl,...,Xn).
i=1 i=1

Thus N; + 1 is a stopping time with respect to the random sequence X, and the result follows from
Wald’s Lemma. O

Theorem 1.8 (Elementary renewal theorem). For a renewal process with finite mean inter-arrival times, the
renewal function satisfies



Proof. By the assumption, we have mean y < co. Further, we know that Sy, > t. Taking expectations
on both sides and using Proposition[L.7, we have y(m; + 1) > t. Dividing both sides by ut and taking
liminf on both sides, we get
oo my 1
Iiminf — > —.
t—oo %

We employ a truncated random variable argument to show the reverse inequality. We define trun-
cated inter-renewal times X : O — [0, M}]N defined as X,, £ X, A M for each n € N, and with common
mean denoted by ). Since X is i.i.d. , so is the truncated sequence X, and hence we can define the
corresponding renewal sequence S : () — RYY and the counting process N : Q — ZI defined as

n
gnéZXi/ n €N, andNté Zl{S_n<t}’ teRy.
i=1 neN U

Note that since S, > S, the number of arrivals would be higher for renewal process N; with truncated
random variables. That is, N; < N;, and hence m; < 7; from the monotonicity of expectation. Further,
due to truncation of inter-arrival time, next renewal happens within M units of time, that is Sy, 1 <
t + M. From the monotonicity of expectation and Wald’s Lemma for renewal processes, we get

(L+m)pm <t+ M.

Dividing both sides by ty s and the fact that m; < 771; for all times t € R, we obtain

7 1
limsup o < limsup o < —.
t—sc0 t—so00 Hm
The result follows from recognizing that limys_e0 pipr = . O

Corollary 1.9. For a delayed renewal process with finite inter-arrival durations, we have lim;_, me(t) =

Example 1.10 (Markov chain). Consider a positive recurrent discrete time Markov chain X : () —
XN taking values in a discrete set X C R. Let the initial state be Xy = x € X and Tj (0) =0 for
y # x € X, then we can inductively define the nth recurrent time to state y as a stopping time

Tj(n):inf{k>ry+(n—1):Xk:y}.

Since any discrete time Markov chain satisfies the strong Markov property, it follows that Tj Q=

NN form a delayed renewal process with the first arrival distribution Py {T;’ (1) = k} = fg), and
the common distribution of the inter-arrival duration X,;,,n > 2 in terms of first return probability

as
P, {r;(1) = k} — 9 keN,

We denote the associated counting process by Ny : QO — ZN, where Ny, (n) = YN 1 (5 (h<n} =

Y %=1 I{x,—y} denotes the number of visits to state y up to time 7. Let y1y = Ey7,/ (1) be the finite
mean inter-arrival time for the renewal process, also the mean recurrence time to state y. From the
strong law for delayed renewal processes it follows that

im0 1),
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Since Ny(n) is number of visits to state y in first n time steps, we have E;Ny(n) =

Yi o P{Xe=y} =21, pg;) From the basic renewal theorem for delayed renewal process it fol-

lows that ®
lim k=1 Pxy — lim IEx[Ny(n)] _ L
nelN n nelN n ‘MW



1.3 Central limit theorem for renewal processes

Theorem 1.11. For a renewal process with inter-arrival times having finite mean y and finite variance o2, the
associated counting process converges to a normal random variable in distribution. Specifically,

lim P Nt — ﬁ 1 /y ,ﬁd
m < =— e 2ax.
s U\/% N~ Var o

Proof. Take u = ﬁ + yo, /#. We shall treat u as an integer and proceed, the proof for general u is an

exercise. Recall that {N; < u} = {S,, > t}. By equating probability measures on both sides, we get

Sy —up t—uy} Sy —up ( yo )1/2
P{N;<u}=P > _p o _yf1+ Yo -
(N <u} { o\u o\u o\u Y +1/ty

Sy—up
ou
variance as t grows. We also observe that

-1/2
lim —y <1 + W) = —.

By central limit theorem,

converges to a normal random variable with zero mean and unit

t—oo \/5
These results combine with the symmetry of normal random variable to give us the result. O
2 Patterns

Let X : Q — XN be an i.i.d. sequence with common probability mass function p € M (X). We denote
the natural filtration of process X by F, £ (9, :n € N) where F, 2 ¢(Xy,...,X,) for all n € N. Let
x = (x1,...,Xm) € X" be a pattern and inductively define nth hitting times of the pattern x as S§ = 0 and

A .
SyEinf{n >S5 1 : Xp=2m,Xp-1=%m-1,..., Xn-m+1 =%1}.

It is easy to check that Sj; is adapted to F, and one can verify that S;; is almost surely finite for all
n € IN. It follows that S* is a sequence of stopping times adapted to F,. Since X is i.i.d. , it follows that
§*: ) — RW is a delayed renewal sequence with inter-renewal durations T} £ S} — S* | being i.i.d. for
n > 2 and independent of T} .

2.1 Hitting time to pattern (1)

First we consider the simplest example when the alphabet X = {0,1}, with the common mean EX; = p,
and the pattern x = (1). One way to solve this problem is to consider S} as a random variable and find
its distribution. We can write

P{st=k}=p"p

We observe that S} is a geometric random variable of the time to first success, with its mean as the
reciprocal of i.i.d. success probability p. An alternative way to solve this is via renewal function ap-
proach. Recall that {S} =1} = {X; =1} and S%H{Xlzo} =1+ 5%)1{)(0:0} in distribution where S1 is
independent of Xy. The result follows from writing

IES% :ES%1{5%>1} +IES%]1{S%:1} = f)IE(l + S%) +p=1+ }’_)IES%

2.2 Hitting time to pattern (0,1)

For the alphabet X = {0,1} with common mean EX; = p, we consider the two length pattern x =
(0,1), then S{ =inf{n € N: X, =1,X,,_1 =0}. We can again model this hitting time as a random
variable, however directly finding the distribution of S* is slightly more complicated. We next attempt
the renewal function approach. Recall that S7 is independent of Xj, and the following equality holds
in distribution S{1;x, 1y = (1 + 57)1{x,—1;- In addition, the following equality holds in distribution
S11ix,=0,x,—0} = (1 + 57) Lyx,—0,x,=0}- Hence, we can write

ES] = ]EST]I{XI:O} + ]ESi‘]l{Xlzl} = ]ESTH{XZ:LXFO} + IESf]l{XZ:O,X] =0} T pE(1+ S7).



We recognize that the second term on the right hand side can be written as
ES{1{x,0,x,—0y = PE(1 + 5{)1{x,—0} = p* + PES{1{x,—0) = p* + PES] — ppE(1 + 57).
Combining the above two results, we can write
ESY = 2pj + p* + PEST + pPPE(1+ S7) =1+ (p + p*)EST.

It follows that ES] =

§.\~

2.3 Hitting time to pattern x

For an i.i.d. sequence X : Q — XN, a general approach is to model X = (X;;, X;—1, Xy—m+1) € X™ as an
m-dimensional time homogeneous irreducible positive recurrent Markov chain. Defining Y £ X" We
are interested in the mean hitting time to state x of the joint process X" : O — YN. It follows that the
successive times for process X" to hit a pattern x € Y is a delayed renewal process in general. Defining
the on times when X™ hits x, it follows from the strong law for renewal processes that the average
number of visits to state x is the reciprocal of mean inter-renewal duration. That is,

nlg%oi Z ]]'{Xm:x nlgl;loi Z ]]'{Xn—xm/ Xnemt1=x1} = prl = ]ETX

Oor eac attern x € y, we define initial sub-patterns x* = (xq,..., Xy ) for K € |m|. € 1nitial sub-patiern
F h patt Y, we define initial sub-patt = for k If the initial sub-patt

is not one of the final sub-patterns, i.e. (x1,...,%¢) # (X;y_gs1,...,%m) for any k € [m], then we observe
that $* is a renewal sequence and ES} = H”’l ™
i=1

Example 2.1. Consider patterns (1) and (01) for i.i.d. Bernoulli sequence X : Q) — {0,1}]N with common
mean EX; = p. Clearly, (1) has no sub-pattern and hence ES} = % Similarly, (01) has a sub-pattern (0)

but (00) is not a sub-pattern of (01) and hence ES! = ﬁlp

If there exists a non empty I C [m] such that for each k € I there is an initial sub-pattern x* such
that (x¥) = (x™_, ) is a final sub-pattern of x, then the mean hitting time to pattern x is equal to the

telescopic sum of mean hitting time to sub-patterns That is, denoting I = {iy,..., it }, we can write

k .
ESf =Y E ;S
=1

1
] +1

. . . . P i1 ..
The mean time duration between two successive hits to xi+1 is IETQCJ = . This is the same mean

ITj—y P,
time from x% to x%+1. Therefore,
k 1
X
ESt =) ——
=1112 P,

Example 2.2. Consider pattern (101) and (1011) for i.i.d. Bernoulli sequence X : Q) — {O,l}IN with
common mean EX; = p. Pattern (101) has sub-patterns (1) and (10), where (1) appears at the end as

well. Therefore,

11
ES! — ES] +E,S}0 — 5t o

Pattern (1011) has sub-patterns (1),(10),(101), where (1) appears at the end. Thus, Therefore,

ES{'" = ES! 4 E; 51" = ; + plﬁ.
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