
Lecture-09: Limit Theorems

1 Growth of renewal counting processes

Lemma 1.1. Consider the counting process N : Ω → Z
R+
+ associated with i.i.d. inter-renewal time sequence

X : Ω → RN
+ with finite mean EXn < ∞. Let N∞ ≜ limt→∞ Nt, then P{N∞ = ∞} = 1.

Proof. It suffices to show P{N∞ < ∞} = 0. Since E[Xn] < ∞, we have P{Xn = ∞} = 0 and

P{N∞ < ∞} = P
⋃

n∈N

{N∞ < n} = P
⋃

n∈N

{Sn = ∞} = P
⋃

n∈N

{Xn = ∞}⩽ ∑
n∈N

P{Xn = ∞} = 0.

Corollary 1.2. For delayed renewal processes with finite mean of first renewal instant and subsequent inter-
renewal times, P

{
limt→∞ ND

t = ∞
}
= 1.

1.1 Strong law for renewal processes

We observed that the number of renewals Nt increases to infinity with the length of the duration t. We
will show that the growth of Nt is asymptotically linear with time t, and we will find this coefficient of
linear growth of Nt with time t.

Theorem 1.3 (Strong law). For a renewal counting process N : Ω → Z
R+
+ with i.i.d. inter-renewal times

X : Ω → RN
+ having a finite mean µ, we have

lim
t→∞

Nt

t
=

1
µ

almost surely.

Proof. Note that SNt represents the time of last renewal before t, and SNt+1 represents the time of first
renewal after time t. Clearly, we have SNt ⩽ t < SNt+1. Dividing by Nt, we get

SNt

Nt
⩽

t
Nt

<
SNt+1

Nt
. (1)

Since Nt increases monotonically to infinity as t grows large, we can apply strong law of large numbers

to the sum SNt = ∑Nt
i=1 Xi, to get limt→∞

SNt
Nt

= µ almost surely. Hence the result follows.

Corollary 1.4. For a delayed renewal process with finite inter-arrival durations, limt→∞
ND(t)

t = 1
µF

.

Example 1.5. Suppose, you are in a casino with infinitely many games. We assume that X : Ω →
[0,1]N is an i.i.d. uniform sequence where Xi is the random probability of win in the game i ∈ N.
One can continue to play a game or switch to another one. We are interested in a strategy that
maximizes the long-run proportion of wins. Let N(n) denote the number of losses in n plays. Then
the fraction of wins PW(n) is given by PW(n) = n−N(n)

n .
We pick a strategy where any game is selected to play, and continue to be played till the first

loss. We show that limn→∞ PW(n) = 1 for this proposed strategy. Let Ti be the number of times a
game i is played. We observe that the conditional probability mass function for the number of plays
for each game i is geometrically distributed as

E[1{Ti=k} | σ(Xi)] = Xk−1
i (1 − Xi), k ∈ N.
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Figure 1: Time of last renewal

Hence, it follows that Ti are i.i.d. random variables with mean ETi = E[E[Ti | Xi]] = E
[

1
1−Xi

]
= ∞.

It follows that each loss is a renewal event, and from the strong law of renewal process, we obtain

lim
n→∞

N(n)
n

=
1

E[Time till first loss]
=

1
ETi

= 0.

1.2 Wald’s lemma for renewal processes

Basic renewal theorem implies Nt
t converges to 1

µ almost surely. We are next interested in convergence
of the ratio mt

t . Note that this is not obvious, since almost sure convergence doesn’t imply convergence
in mean. To illustrate this, we have the following example.

Example 1.6. Consider a Bernoulli random sequence X : Ω →{0,1}N with probability P{Xn = 1}=
1
n , and another random sequence Y : Ω → ZN

+ defined as Yn ≜ nXn for n ∈ N. Then, P{Yn = 0} =

1 − 1
n . That is Yn → 0 a.s. However, E[Yn] = 1 for all n ∈ N. So E[Yn]→ 1.

Even though, basic renewal theorem does NOT imply it, we still have mt
t converging to 1

µ . We first
need this technical Lemma.

Proposition 1.7 (Wald’s Lemma for renewal process). Let m : R+ → R+ be the renewal function for a
renewal counting process N : Ω → Z

R+
+ with i.i.d. inter-arrival times X : Ω → RN

+ having finite mean µ =
E[X1] < ∞. Then, Nt + 1 is a stopping time for the sequence X, and

E

[
Nt+1

∑
i=1

Xi

]
= µ(1 + mt).

Proof. We observe that for any n ∈ N, the event {Nt + 1 = n} belongs to σ(X1, . . . , Xn), since

{Nt + 1 = n} = {Sn−1 ⩽ t < Sn} =
{

n−1

∑
i=1

Xi ⩽ t <
n−1

∑
i=1

Xi + Xn

}
∈ σ(X1, . . . , Xn).

Thus Nt + 1 is a stopping time with respect to the random sequence X, and the result follows from
Wald’s Lemma.

Theorem 1.8 (Elementary renewal theorem). For a renewal process with finite mean inter-arrival times, the
renewal function satisfies

lim
t→∞

mt

t
=

1
µ

.
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Proof. By the assumption, we have mean µ < ∞. Further, we know that SNt+1 > t. Taking expectations
on both sides and using Proposition 1.7, we have µ(mt + 1) > t. Dividing both sides by µt and taking
liminf on both sides, we get

liminf
t→∞

mt

t
⩾

1
µ

.

We employ a truncated random variable argument to show the reverse inequality. We define trun-
cated inter-renewal times X̄ : Ω → [0, M]N defined as X̄n ≜ Xn ∧ M for each n ∈ N, and with common
mean denoted by µM. Since X is i.i.d. , so is the truncated sequence X̄, and hence we can define the
corresponding renewal sequence S̄ : Ω → RN

+ and the counting process N̄ : Ω → ZN
+ defined as

S̄n ≜
n

∑
i=1

X̄i, n ∈ N, and N̄t ≜ ∑
n∈N

1{S̄n⩽t}, t ∈ R+.

Note that since Sn ⩾ S̄n, the number of arrivals would be higher for renewal process N̄t with truncated
random variables. That is, Nt ⩽ N̄t, and hence mt ⩽ m̄t from the monotonicity of expectation. Further,
due to truncation of inter-arrival time, next renewal happens within M units of time, that is S̄N̄t+1 ⩽
t + M. From the monotonicity of expectation and Wald’s Lemma for renewal processes, we get

(1 + m̄t)µM ⩽ t + M.

Dividing both sides by tµM and the fact that mt ⩽ m̄t for all times t ∈ R+, we obtain

limsup
t→∞

mt

t
⩽ limsup

t→∞

m̄t

t
⩽

1
µM

.

The result follows from recognizing that limM→∞ µM = µ.

Corollary 1.9. For a delayed renewal process with finite inter-arrival durations, we have limt→∞
mD(t)

t = 1
µF

.

Example 1.10 (Markov chain). Consider a positive recurrent discrete time Markov chain X : Ω →
XN taking values in a discrete set X ⊂ R. Let the initial state be X0 = x ∈ X and τ+

y (0) = 0 for
y ̸= x ∈ X, then we can inductively define the nth recurrent time to state y as a stopping time

τ+
y (n) = inf

{
k > τ+

y (n − 1) : Xk = y
}

.

Since any discrete time Markov chain satisfies the strong Markov property, it follows that τ+
y : Ω →

NN form a delayed renewal process with the first arrival distribution Px

{
τ+

y (1) = k
}
= f (k)xy , and

the common distribution of the inter-arrival duration Xn,n ⩾ 2 in terms of first return probability
as

Py

{
τ+

y (1) = k
}
= f (k)yy , k ∈ N.

We denote the associated counting process by Ny : Ω → ZN
+ , where Ny(n) = ∑i∈N1{τ+y (i)⩽n} =

∑n
k=11{Xk=y} denotes the number of visits to state y up to time n. Let µyy = Eyτ+

y (1) be the finite
mean inter-arrival time for the renewal process, also the mean recurrence time to state y. From the
strong law for delayed renewal processes it follows that

Py

{
lim
n∈N

Ny(n)
n

=
1

µyy

}
= 1.

Since Ny(n) is number of visits to state y in first n time steps, we have Ex Ny(n) =

∑n
k=1 Px {Xk = y} = ∑n

k=1 p(k)xy From the basic renewal theorem for delayed renewal process it fol-
lows that

lim
n∈N

∑n
k=1 p(k)xy

n
= lim

n∈N

Ex[Ny(n)]
n

=
1

µyy
.
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1.3 Central limit theorem for renewal processes

Theorem 1.11. For a renewal process with inter-arrival times having finite mean µ and finite variance σ2, the
associated counting process converges to a normal random variable in distribution. Specifically,

lim
t→∞

P

Nt − t
µ

σ
√

t
µ3

< y

 =
1√
2π

∫ y

−∞
e−

x2
2 dx.

Proof. Take u = t
µ + yσ

√
t

µ3 . We shall treat u as an integer and proceed, the proof for general u is an

exercise. Recall that {Nt < u} = {Su > t}. By equating probability measures on both sides, we get

P{Nt < u} = P
{

Su − uµ

σ
√

u
>

t − uµ

σ
√

u

}
= P

{
Su − uµ

σ
√

u
> −y

(
1 +

yσ√
tµ

)−1/2
}

.

By central limit theorem, Su−uµ

σ
√

u converges to a normal random variable with zero mean and unit
variance as t grows. We also observe that

lim
t→∞

−y
(

1 +
yσ√

tu

)−1/2
= −y.

These results combine with the symmetry of normal random variable to give us the result.

2 Patterns

Let X : Ω → XN be an i.i.d. sequence with common probability mass function p ∈ M(X). We denote
the natural filtration of process X by F• ≜ (Fn : n ∈ N) where Fn ≜ σ(X1, . . . , Xn) for all n ∈ N. Let
x = (x1, . . . , xm) ∈Xm be a pattern and inductively define nth hitting times of the pattern x as Sx

0 ≜ 0 and

Sx
n ≜ inf

{
n > Sx

n−1 : Xn = xm, Xn−1 = xm−1, . . . , Xn−m+1 = x1
}

.

It is easy to check that Sx
n is adapted to F• and one can verify that Sx

n is almost surely finite for all
n ∈ N. It follows that Sx is a sequence of stopping times adapted to F•. Since X is i.i.d. , it follows that
Sx : Ω → RN

+ is a delayed renewal sequence with inter-renewal durations Tx
n ≜ Sx

n − Sx
n−1 being i.i.d. for

n ⩾ 2 and independent of Tx
1 .

2.1 Hitting time to pattern (1)

First we consider the simplest example when the alphabet X= {0,1}, with the common mean EX1 = p,
and the pattern x = (1). One way to solve this problem is to consider S1

1 as a random variable and find
its distribution. We can write

P
{

S1
1 = k

}
= p̄k−1 p.

We observe that S1
1 is a geometric random variable of the time to first success, with its mean as the

reciprocal of i.i.d. success probability p. An alternative way to solve this is via renewal function ap-
proach. Recall that

{
S1

1 = 1
}
= {X1 = 1} and S1

11{X1=0} = (1 + S1
1)1{X0=0} in distribution where S1

1 is
independent of X0. The result follows from writing

ES1
1 = ES1

11{S1
1>1} + ES1

11{S1
1=1} = p̄E(1 + S1

1) + p = 1 + p̄ES1
1.

2.2 Hitting time to pattern (0,1)

For the alphabet X = {0,1} with common mean EX1 = p, we consider the two length pattern x =
(0,1), then Sx

1 = inf{n ∈ N : Xn = 1, Xn−1 = 0}. We can again model this hitting time as a random
variable, however directly finding the distribution of Sx is slightly more complicated. We next attempt
the renewal function approach. Recall that Sx

1 is independent of X0, and the following equality holds
in distribution Sx

11{X1=1} = (1 + Sx
1)1{X0=1}. In addition, the following equality holds in distribution

Sx
11{X1=0,X2=0} = (1 + Sx

1)1{X1=0,X0=0}. Hence, we can write

ESx
1 = ESx

11{X1=0} + ESx
11{X1=1} = ESx

11{X2=1,X1=0} + ESx
11{X2=0,X1=0} + pE(1 + Sx

1).
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We recognize that the second term on the right hand side can be written as

ESx
11{X2=0,X1=0} = p̄E(1 + Sx

1)1{X1=0} = p̄2 + p̄ESx
11{X1=0} = p̄2 + p̄ESx

1 − p̄pE(1 + Sx
1).

Combining the above two results, we can write

ESx
1 = 2pp̄ + p̄2 + p̄ESx

1 + p2E(1 + Sx
1) = 1 + ( p̄ + p2)ESx

1 .

It follows that ESx
1 = 1

pp̄ .

2.3 Hitting time to pattern x

For an i.i.d. sequence X : Ω → XN, a general approach is to model Xm
n = (Xn, Xn−1, Xn−m+1) ∈ Xm as an

m-dimensional time homogeneous irreducible positive recurrent Markov chain. Defining Y ≜ Xm We
are interested in the mean hitting time to state x of the joint process Xm : Ω → YN. It follows that the
successive times for process Xm to hit a pattern x ∈ Y is a delayed renewal process in general. Defining
the on times when Xm hits x, it follows from the strong law for renewal processes that the average
number of visits to state x is the reciprocal of mean inter-renewal duration. That is,

lim
n→∞

1
N

N

∑
n=1

1{Xm
n =x} = lim

n→∞

1
N

N

∑
n=1

1{Xn=xm ,...,Xn−m+1=x1} =
m

∏
i=1

pxi =
1

ETx
k

.

For each pattern x ∈ Y, we define initial sub-patterns xk ≜ (x1, . . . , xk) for k ∈ [m]. If the initial sub-pattern
is not one of the final sub-patterns, i.e. (x1, . . . , xk) ̸= (xm−k+1, . . . , xm) for any k ∈ [m], then we observe
that Sx is a renewal sequence and ESx

1 = 1
∏m

i=1 pxi
.

Example 2.1. Consider patterns (1) and (01) for i.i.d. Bernoulli sequence X : Ω →{0,1}N with common
mean EX1 = p. Clearly, (1) has no sub-pattern and hence ES1

1 =
1
p . Similarly, (01) has a sub-pattern (0)

but (00) is not a sub-pattern of (01) and hence ES01
1 = 1

p̄p .

If there exists a non empty I ⊆ [m] such that for each k ∈ I there is an initial sub-pattern xk such
that (xk) = (xm

m−k+1) is a final sub-pattern of x, then the mean hitting time to pattern x is equal to the
telescopic sum of mean hitting time to sub-patterns That is, denoting I ≜ {i1, . . . , ik}, we can write

ESx
1 =

k

∑
j=1

E
xij S

xij+1

1 .

The mean time duration between two successive hits to xij+1 is ETxij+1

2 = 1

∏
ij+1
ℓ=1 pxℓ

. This is the same mean

time from xij to xij+1 . Therefore,

ESx
1 =

k

∑
j=1

1

∏
ij+1
ℓ=1 pxℓ

.

Example 2.2. Consider pattern (101) and (1011) for i.i.d. Bernoulli sequence X : Ω → {0,1}N with
common mean EX1 = p. Pattern (101) has sub-patterns (1) and (10), where (1) appears at the end as
well. Therefore,

ES(101)
1 = ES1

1 + E1S101
1 =

1
p
+

1
p2 p̄

.

Pattern (1011) has sub-patterns (1), (10), (101), where (1) appears at the end. Thus, Therefore,

ES(101)
1 = ES1

1 + E1S1011
1 =

1
p
+

1
p3 p̄

.
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