Lecture-22: Queues

1 Continuous time queues

A queueing system consists of arriving entities buffered to get serviced by a collection of servers with
finite service capacity.

1.1 Notation
The notation A/T/N/B/S for a queueing system indicates different components.

A : stands for inter-arrival time distribution. Typical inter-arrival time distributions are general in-
dependent (GI) so that number of arrivals is a renewal counting process, memoryless (M) for
Poisson arrivals, phase-type (PH), or deterministic (D).

T : stands for service time distribution. Similar to inter-arrival time distribution, the typical service
time distributions are general independent (GI), memoryless (M) for exponential service times,
phase-type (PH), or deterministic (D).

N : stands for number of servers. The number of servers could be one, finite (N), or countably infinite

(c0).

B : stands for the buffer size, or the maximum number of entities waiting and in service at any time.
The bulffer size is typically arbitrarily large (o), or equal to the number of servers. If there is no
buffer size specified, then it is countably infinite by default.

S: stands for the queueing service discipline. Service discipline is usually first-come-first-served
(FCES), last-come-first-served (LCFS), or priority-ordered with or without pre-emption, or processor-
shared (PS). If there is no queueing discipline specified, then it is FIFO by default.

Typical performance metrics of interest are the sojourn times averaged over each arriving entity,
and the number of entities in the queue as seen by an incoming arrival or outgoing departure from the
system.

1.2 GI/GI/1 queue

We denote the random sequence of arrival instants by A : ) — R where A, is the arrival instant of nth
entity. The inter-arrival time sequence is denoted by & : Q — RY, where &, £ A, — A,,_1 is the duration
between the (n — 1)th and nth arrival instants. The random service requirement sequence is denoted
by 0: Q — RY, where ¢, is the amount of service needed by nth arrival. For simplicity of analysis,
one assumes that the random inter-arrival sequence ¢ : O — R and random service time sequence
o : Q) — RY are i.id. and independent to each other. The arrival point process A : RY is assumed to
be simple, that is P{¢; > 0} = 1, and hence this point process is a renewal process. The arrival rate
is denoted by A £ JE%N and the service rate is denoted by y = ]E%rl' The average load on the system is

denoted by p = Eg: = %

We denote the random departure instant sequence by D : QO — RY where D,, is the departure instant
of nth arrival, the random waiting time sequence by W : Q — R where W, is the waiting time of nth
arrival, and the buffer occupancy process by L: () — ZE+ where L; is the number of entities in the
buffer at time t € R4.. These are derived processes from the arrival instant and service time processes,
given the number of servers, the buffer size, and the service discipline. The number of arrivals and
departures in a time duration I C R are denoted by N“(I) and N (I) respectively. When the interval
is (0,t] for some t € R, then we denote N/* = N4(0,t] and NP = NP (0,t]. Defining (x)+ = max{x,0},



and for initial waiting time Wy = w, we can write the waiting time for (n + 1)th customer before it
receives service, as
Wii1= Wy +0n —Cuy1)+, nE€Zy.

We define a random walk S : QO — RN defined as S, £ Y_I' | X; for all n € N with Sy £ 0, where i.i.d.
step-size sequence X : Q) — RN is defined as X,, {1 = 0, — &, 1 for the step-size n € N. For the random
walk S : QO — RN, the history until nth step is denoted by F,, = ¢(0p,...,0,_1,1,-..,&n). In terms of
the i.i.d. step-size sequence X : QO — RN, we can write the waiting time sequence W as the reflected
random walk, where W, ;1 = (W, + X;,41)+ for each n € Z. From the independence of sequence
((0n,En41) : n € N), it follows that reflected random walk W : Q — RE is a Markov process. Since X is
i.i.d. , it follows that W is time homogeneous.

1.3 Poisson arrivals see time averages (PASTA)

Consider a stochastic process X : QO — X®+ and a homogeneous Poisson arrival counting process N :
Q— Z%' with rate A defined on the same probability space (Q), F, P), such that X; is the system state at
time t and N is the number of arrivals in the duration (0,t]. We define the natural filtration Fo = (F; :
t € Ry ) for the joint process (X, N), such that F; £ 0(Xs,Ns,s <t)forall t € Ry.

Assumption 1.1 (Lack of anticipation (LAA)). Increment N; — N is independent of J; for all s > ¢

Definition 1.2. For a Borel measurable set B € B(X), we define a left continuous with right limits

process u21 (X,eB)} for all times t € Ry, to define two derived processes t — 7= fo Usds and t —
= fo UsdN;. The asymptotic time average of system being in state B is defined as
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75 = lim ?/0 1yx,epydu = tli}rg?.
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We define the asymptotic average of the system being in state B as seen by an arriving customer as
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Theorem 1.3 (PASTA). Under LAA assumption, Tg = Cp almost surely.

Proof. We define a process t — R; 2Y, — AV, forall t € R.. Since lim;_co N% = A almost surely, it suffices
to show that lim;_,«o % = 0 almost surely.

Step 1: We will show that [E[R;,; — R; | F¢] for any t,h € Ry. For each t,h € R} and n € IN, we define
Yy, = Z,’(‘;é u,, i (Nt+ e — N, o ). We observe that lim,,cy Y/, = Yi1p — Yy almost surely. From

the LAA assumption, we get E[Y/, | ] = A [% Y U, | ?t} . Applying bounded convergence
theorem for the conditional expectation, we obtain

E[Yion —Yi | 51] = E[lim ¥p, | 51] = lim E[Y}, | 51] = B[V, — Ve | 7]

It follows that E[R;j, — R¢ | F5] = 0 for any s < t and R is continuous time martingale adapted to
filtration J,.

Step 2: We will show that lim; e % = 0 almost surely. Since U, € {0,1} is an indicator function, it
follows that 0 < V; <t and 0 < Y; < N;. Therefore, ]ER% < ]EYt2 + )\ZJEVtz < At + A2f2. We observe
that n— R, — R(,_1)y, is discrete-time martingale adapted to filtration F,, and }_,cn %IE(RW —
R(n—1)h)2 <A1+ AR Y en nl—z < oo. It follows that limy—« R;l‘h = 0 almost surely. The result
follows from observing that R, — Al < Rt < Ry, 1y, + Al for t € [nh, (n + 1)h).

0
Theorem 1.4 (Little’s law). Fora GI/G/1 queue with p <1,

N
lim 1 Lydu=A hm M.
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Proof. The key observation follows from looking at the piecewise constant curve Ly, to conclude

NP t N
Z(Wi-f—(?'i) < /O Lydu < Z(W,‘—f—(?'i).
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Further, for a stable queue we have lim; ;e - = lim;,« —~. Hence,
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Now, if lim; 00 -~ and limy e A Z (W + 0;) exist, and lim; .o =~ = A we get the result. O
t

1.4 M/M/1 queue

The M/M/1 queue is the simplest and most studied models of queueing systems. We assume a
continuous-time queueing model with following components.

¢ There is a single queue for waiting that can accommodate arbitrarily large number of customers.

* Arrivals to the queue occur according to a Poisson process with rate A > 0. That is, let A, be the
arrival instant of the nth customer, then the sequence of inter-arrival times ¢ is i.i.d. exponentially
distributed with rate A.

e There is a single server and the service time of nth customer is denoted by a random variable
u. The sequence of service times o : O — R is i.i.d. exponentially distributed with rate u > 0,
independent of the Poisson arrival process.

¢ We assume that customers join the tail of the queue, and hence begin service in the order that they
arrive first-in-queue-first-out (FIFO).

Let L; denote the number of customers in the system at time ¢ € R, where “system” means the queue
plus the service area. For example, L; = 2 means that there is one customer in service and one waiting
in line.

1.4.1 Transition rates

Since the arrival and the service times are memoryless, the residual time for next arrival Y/* is identi-
cally distributed to ¢; and independent of past F; and residual service time for entity in service Y is
identically distributed to o7 and independent of past F;. We observe that L; remains unchanged in the
time ¢ 4 [0,min { Y2, Y5 }). Tt follows that L : Q — Z* is a right continuous process with left limits, and
is piece-wise constant. Further, we observe that L; can have a unit increase if Y/* < Y? corresponding
to an arrival, and a unit decrease for L; > 1 if YtA < Yts corresponding to a departure. If L; = 0, there
can be no service and L; remains 0 until f + Y7, and has a unit increase at time f + YtA. Further, L; can
have at most one transition in an infinitesimally small interval (¢, ¢ + h] with high probability, since the
probability of two or more transitions is of order o(h). It follows that L is a homogeneous CTMC, and
we can write the corresponding generator matrix as

Q(n,m) = )‘]l{m—nzl} + V]l{n—mzl,m20}‘

We observe that Q(n,n) = —(A + u) for n € N and Q(0,0) = —A. It follows that M/M/1 queue occu-
pancy is an irreducible CTMC.

1.4.2 Equilibrium distribution and reversibility

We can define the load p = %, and find the stationary distribution 7 by solving the global balance
equation 7t = 7tQ which gives

nnlenfl,n + 77:n+1Qn+l,n = —71,Qun, 7T1Q1,0 = —mQoo-



Taking the discrete Fourier transform I'l(z) = ¥,,cz, 2" 7, of the distribution 77, we get zATI(z) +z ' u(T1(z) —

7(0)) = (A + p)I1(z) — umr(0). Thatis, I1(z) = (ffg)p). Hence it follows from }_,,cz, 7t(n) =1 that

n(n)=(1-p)p", ne€Z,.

Example 1.5 (M/M/1 queue). The M/M/1 queue’s generator defines a birth-death process. Hence,
if it is stationary, then it must be time-reversible, with the equilibrium distribution 7 satisfying the
detailed balance equations 7,A = 71,41 for each n € Z . This yields 7,41 = p7t, for the system load

o= E—g = % Since } ez, 7 = 1, we must have p < 1, such that 7r, = (1 — p)p" for each n € Z.. In
other words, if A < y, then the equilibrium distribution of the number of customers in the system is

geometric with parameter p = % We say that the M/M/1 queue is in the stable regime when p < 1.

Corollary 1.6. The number of customers in a stable M/M/1 queueing system at equilibrium is a reversible
Markov process.

Theorem 1.7 (Burke). Departures from a stable M/M/1 queue are Poisson with same rate as the arrivals.

Exercise 1.8. Directly characterize the departure process from a stable M /M /1 queue at station-
arity.
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