
Lecture-22: Queues

1 Continuous time queues

A queueing system consists of arriving entities buffered to get serviced by a collection of servers with
finite service capacity.

1.1 Notation

The notation A/T/N/B/S for a queueing system indicates different components.

A : stands for inter-arrival time distribution. Typical inter-arrival time distributions are general in-
dependent (GI) so that number of arrivals is a renewal counting process, memoryless (M) for
Poisson arrivals, phase-type (PH), or deterministic (D).

T : stands for service time distribution. Similar to inter-arrival time distribution, the typical service
time distributions are general independent (GI), memoryless (M) for exponential service times,
phase-type (PH), or deterministic (D).

N : stands for number of servers. The number of servers could be one, finite (N), or countably infinite
(∞).

B : stands for the buffer size, or the maximum number of entities waiting and in service at any time.
The buffer size is typically arbitrarily large (∞), or equal to the number of servers. If there is no
buffer size specified, then it is countably infinite by default.

S : stands for the queueing service discipline. Service discipline is usually first-come-first-served
(FCFS), last-come-first-served (LCFS), or priority-ordered with or without pre-emption, or processor-
shared (PS). If there is no queueing discipline specified, then it is FIFO by default.

Typical performance metrics of interest are the sojourn times averaged over each arriving entity,
and the number of entities in the queue as seen by an incoming arrival or outgoing departure from the
system.

1.2 GI/GI/1 queue

We denote the random sequence of arrival instants by A : Ω → RN
+ where An is the arrival instant of nth

entity. The inter-arrival time sequence is denoted by ξ : Ω → RN
+ , where ξn ≜ An − An−1 is the duration

between the (n − 1)th and nth arrival instants. The random service requirement sequence is denoted
by σ : Ω → RN

+ , where σn is the amount of service needed by nth arrival. For simplicity of analysis,
one assumes that the random inter-arrival sequence ξ : Ω → RN

+ and random service time sequence
σ : Ω → RN

+ are i.i.d. and independent to each other. The arrival point process A : RN
+ is assumed to

be simple, that is P{ξ1 > 0} = 1, and hence this point process is a renewal process. The arrival rate
is denoted by λ ≜ 1

Eξ1
, and the service rate is denoted by µ ≜ 1

Eσ1
. The average load on the system is

denoted by ρ ≜ Eσn
Eξn

= λ
µ .

We denote the random departure instant sequence by D : Ω → RN
+ where Dn is the departure instant

of nth arrival, the random waiting time sequence by W : Ω → RN
+ where Wn is the waiting time of nth

arrival, and the buffer occupancy process by L : Ω → Z
R+
+ where Lt is the number of entities in the

buffer at time t ∈ R+. These are derived processes from the arrival instant and service time processes,
given the number of servers, the buffer size, and the service discipline. The number of arrivals and
departures in a time duration I ⊆ R+ are denoted by NA(I) and ND(I) respectively. When the interval
is (0, t] for some t ∈ R+, then we denote NA

t ≜ NA(0, t] and ND
t ≜ ND(0, t]. Defining (x)+ ≜ max{x,0},
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and for initial waiting time W0 ≜ w, we can write the waiting time for (n + 1)th customer before it
receives service, as

Wn+1 = (Wn + σn − ξn+1)+, n ∈ Z+.

We define a random walk S : Ω → RN defined as Sn ≜ ∑n
i=1 Xi for all n ∈ N with S0 ≜ 0, where i.i.d.

step-size sequence X : Ω → RN is defined as Xn+1 ≜ σn − ξn+1 for the step-size n ∈ N. For the random
walk S : Ω → RN, the history until nth step is denoted by Fn ≜ σ(σ0, . . . ,σn−1,ξ1, . . . ,ξn). In terms of
the i.i.d. step-size sequence X : Ω → RN, we can write the waiting time sequence W as the reflected
random walk, where Wn+1 = (Wn + Xn+1)+ for each n ∈ Z+. From the independence of sequence
((σn,ξn+1) : n ∈ N), it follows that reflected random walk W : Ω → RN

+ is a Markov process. Since X is
i.i.d. , it follows that W is time homogeneous.

1.3 Poisson arrivals see time averages (PASTA)

Consider a stochastic process X : Ω → XR+ and a homogeneous Poisson arrival counting process N :
Ω → Z

R+
+ with rate λ defined on the same probability space (Ω,F, P), such that Xt is the system state at

time t and Nt is the number of arrivals in the duration (0, t]. We define the natural filtration F• ≜ (Ft :
t ∈ R+) for the joint process (X, N), such that Ft ≜ σ(Xs, Ns, s ⩽ t) for all t ∈ R+.

Assumption 1.1 (Lack of anticipation (LAA)). Increment Ns − Nt is independent of Ft for all s ⩾ t.

Definition 1.2. For a Borel measurable set B ∈ B(X), we define a left continuous with right limits
process Ut ≜ 1{Xt∈B} for all times t ∈ R+, to define two derived processes t 7→ Vt ≜

∫ t
0 Usds and t 7→

Yt ≜
∫ t

0 UsdNs. The asymptotic time average of system being in state B is defined as

τ̄B ≜ lim
t→∞

1
t

∫ t

0
1{Xu∈B}du = lim

t→∞

Vt

t
.

We define the asymptotic average of the system being in state B as seen by an arriving customer as

c̄B ≜ lim
n∈N

1
n

n

∑
i=1

1{
XA−

i
∈B

} = lim
t→∞

Yt

Nt
.

Theorem 1.3 (PASTA). Under LAA assumption, τ̄B = c̄B almost surely.

Proof. We define a process t 7→ Rt ≜Yt − λVt for all t ∈ R+. Since limt→∞
t

Nt
= λ almost surely, it suffices

to show that limt→∞
Rt
t = 0 almost surely.

Step 1: We will show that E[Rt+h − Rt | Ft] for any t, h ∈ R+. For each t, h ∈ R+ and n ∈ N, we define
Yn

t,h ≜ ∑n−1
k=0 Ut+ kh

n
(N

t+ (k+1)h
n

− Nt+ kh
n
). We observe that limn∈N Yn

t,h =Yt+h −Yt almost surely. From

the LAA assumption, we get E[Yn
t,h |Ft] = λE

[
h
n ∑n−1

k=0 Ut+ kh
n
|Ft

]
. Applying bounded convergence

theorem for the conditional expectation, we obtain

E[Yt+h − Yt | Ft] = E[ lim
n∈N

Yn
t,h | Ft] = lim

n∈N
E[Yn

t,h | Ft] = λE[Vt+h − Vt | Ft].

It follows that E[Rt+h − Rt | Fs] = 0 for any s ⩽ t and R is continuous time martingale adapted to
filtration F•.

Step 2: We will show that limt→∞
Rt
t = 0 almost surely. Since Uu ∈ {0,1} is an indicator function, it

follows that 0 ⩽ Vt ⩽ t and 0 ⩽ Yt ⩽ Nt. Therefore, ER2
t ⩽ EY2

t + λ2EV2
t ⩽ λt + λ2t2. We observe

that n 7→ Rnh − R(n−1)h is discrete-time martingale adapted to filtration F•, and ∑n∈N
1

n2 E(Rnh −
R(n−1)h)

2 ⩽ λh(1 + λh)∑n∈N
1

n2 < ∞. It follows that limn→∞
Rnh

n = 0 almost surely. The result
follows from observing that Rnh − λh ⩽ Rt ⩽ R(n+1)h + λh for t ∈ [nh, (n + 1)h).

Theorem 1.4 (Little’s law). For a GI/G/1 queue with ρ < 1,

lim
t→∞

1
t

∫ t

0
Ludu = λ lim

t→∞

∑
NA

t
i=1(Wi + σi)

NA
t

.
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Proof. The key observation follows from looking at the piecewise constant curve Lt, to conclude

ND
t

∑
i=1

(Wi + σi)⩽
∫ t

0
Ludu ⩽

NA
t

∑
i=1

(Wi + σi).

Further, for a stable queue we have limt→∞
ND

t
t = limt→∞

NA
t
t . Hence,

lim
t→∞

1
t

∫ t

0
Ludu = lim

t→∞

1
t

NA
t

∑
i=1

(Wi + σi) = lim
t→∞

1
NA

t

NA
t
t

NA
t

∑
i=1

(Wi + σi).

Now, if limt→∞
NA

t
t and limt→∞

1
NA

t
∑

NA
t

i=1(Wi + σi) exist, and limt→∞
NA

t
t = λ we get the result.

1.4 M/M/1 queue

The M/M/1 queue is the simplest and most studied models of queueing systems. We assume a
continuous-time queueing model with following components.

• There is a single queue for waiting that can accommodate arbitrarily large number of customers.

• Arrivals to the queue occur according to a Poisson process with rate λ > 0. That is, let An be the
arrival instant of the nth customer, then the sequence of inter-arrival times ξ is i.i.d. exponentially
distributed with rate λ.

• There is a single server and the service time of nth customer is denoted by a random variable
σn. The sequence of service times σ : Ω → RN

+ is i.i.d. exponentially distributed with rate µ > 0,
independent of the Poisson arrival process.

• We assume that customers join the tail of the queue, and hence begin service in the order that they
arrive first-in-queue-first-out (FIFO).

Let Lt denote the number of customers in the system at time t ∈ R+, where “system” means the queue
plus the service area. For example, Lt = 2 means that there is one customer in service and one waiting
in line.

1.4.1 Transition rates

Since the arrival and the service times are memoryless, the residual time for next arrival YA
t is identi-

cally distributed to ξ1 and independent of past Ft and residual service time for entity in service YS
t is

identically distributed to σ1 and independent of past Ft. We observe that Lt remains unchanged in the
time t+ [0,min

{
YA

t ,YS
t
}
). It follows that L : Ω → Z

R+
+ is a right continuous process with left limits, and

is piece-wise constant. Further, we observe that Lt can have a unit increase if YA
t < YS

t corresponding
to an arrival, and a unit decrease for Lt ⩾ 1 if YA

t < YS
t corresponding to a departure. If Lt = 0, there

can be no service and Lt remains 0 until t + YA
t , and has a unit increase at time t + YA

t . Further, Lt can
have at most one transition in an infinitesimally small interval (t, t + h] with high probability, since the
probability of two or more transitions is of order o(h). It follows that L is a homogeneous CTMC, and
we can write the corresponding generator matrix as

Q(n,m) = λ1{m−n=1} + µ1{n−m=1,m⩾0}.

We observe that Q(n,n) = −(λ + µ) for n ∈ N and Q(0,0) = −λ. It follows that M/M/1 queue occu-
pancy is an irreducible CTMC.

1.4.2 Equilibrium distribution and reversibility

We can define the load ρ = λ
µ , and find the stationary distribution π by solving the global balance

equation π = πQ which gives

πn−1Qn−1,n + πn+1Qn+1,n = −πnQnn, π1Q1,0 = −π0Q00.
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Taking the discrete Fourier transform Π(z) =∑n∈Z+
znπn of the distribution π, we get zλΠ(z)+ z−1µ(Π(z)−

π(0)) = (λ + µ)Π(z)− µπ(0). That is, Π(z) = π(0)
(1−zρ)

. Hence it follows from ∑n∈Z+
π(n) = 1 that

π(n) = (1 − ρ)ρn, n ∈ Z+.

Example 1.5 (M/M/1 queue). The M/M/1 queue’s generator defines a birth-death process. Hence,
if it is stationary, then it must be time-reversible, with the equilibrium distribution π satisfying the
detailed balance equations πnλ = πn+1µ for each n ∈ Z+. This yields πn+1 = ρπn for the system load
ρ = Eσ1

Eξ1
= λ

µ . Since ∑n∈Z+
πn = 1, we must have ρ < 1, such that πn = (1 − ρ)ρn for each n ∈ Z+. In

other words, if λ < µ, then the equilibrium distribution of the number of customers in the system is
geometric with parameter ρ = λ

µ . We say that the M/M/1 queue is in the stable regime when ρ < 1.

Corollary 1.6. The number of customers in a stable M/M/1 queueing system at equilibrium is a reversible
Markov process.

Theorem 1.7 (Burke). Departures from a stable M/M/1 queue are Poisson with same rate as the arrivals.

Exercise 1.8. Directly characterize the departure process from a stable M/M/1 queue at station-
arity.
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