Lecture-02: Probability Review

1 Probability Review

Definition 1.1 (v-algebra). A collection A of subsets of a set () is called a c-algebra if
(i) it contains the empty set,
(if) itis closed under complements, and

(iii) itis closed under countable unions.

Definition 1.2. A probability space (Q),F, P) consists of
(i) set of all possible outcomes called a sample space denoted by (3,
(if) a o-algebra over sample space called event space denoted by JF, and
(ili) a set function probability denoted by P : F — [0,1] such that (a) P is non-negative, (b) P(Q)) =1,
and (c) P is additive for countably disjoint events.
An element of the sample space is called an outcome and an element of event space is called an event.

Definition 1.3. A collection of events & C J is called a sub-event space if it is a o-algebra over Q).

Definition 1.4. For a family of events A C F, the sub-event space generated by the family A is the
smallest sub-event space containing the family A and denoted by o(.A).

Remark 1. The sub-event space 0 (.A) contains all the elements of .4 and the complements and countable
unions of generated sets.

Example 1.5 (Discrete o-algebra). For a finite sample space Q, the discrete event space P(Q) £
{A: A CQ} consists of all subsets of sample space (), and is sometimes also denoted by 2. In
particular, P(Q)) consists of singleton set {w} for each outcome w € Q).

Example 1.6 (Borel o-algebra). If the sample space (2 = IR, then a Borel o-algebra is generated by
half-open intervals by complements and countable unions. That is, B(R) £ o({(—0,x] : x € R}).
We make the following observations.

1. From closure under complements, the open interval (x, o) belong to B(IR) for each x € R.

2. From closure under countable unions, the open interval (—co,x) = U,en(—00,x — %] belongs
to B(R) for each x € R.

3. From closure under complements, half-closed intervals [x, c0) belongs to B(IR) for each x € RR.
4. From closure under finite intersections, the closed set [x,y] = [x,00) N (—oo, y] belongs to B(R)
for each x,y € R.

1
nl

5. From closure under countable intersections, the singleton {x} = ,en([x — ,x+ 1]) belongs

to B(R) for each x € R.

1.1 Limits of sets and continuity of probability

There is a natural order of inclusion on sets through which we can define monotonicity of probability
set function P. To define continuity of this set function, we define limits of sets.

Definition 1.7. For a sequence of sets (A, : n € IN), we define limit superior and limit inferior of this
set sequence respectively as

limsup A, = ﬂ U Ayg, lirrilqiann = U ﬂ Ay.
n
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Remark 2. It is easy to check that liminf A, C limsup A;. To see this, we observe that Ny, Ay C Ay for
all k > n. This implies that Ny, Ax € Ui A for all n,£ € N and hence N>, Ax € Npen Uk Ay for all
n € IN and the result follows.

Definition 1.8. We say that limit of set sequence (A, : n € IN) exists if limsup A, C liminf A,, and the
limit of the set sequence in this case is denoted as lim A, 2 lim sup A, = liminf A,,.

Theorem 1.9. Probability set function is monotone and continuous.

Proof. Consider a probability set function P : & — [0,1].
Monotonicity: Consider two events A C B both elements of F, then from the additivity of probability
over disjoint events A and B \ A, we have

P(B) = P(AU(B\ A)) = P(A) + P(B\ A) > P(A).

Monotonicity follows from non-negativity of probability set function, that is since P(B \ A) > 0.

Continuity: For continuity from below, we take a nondecreasing sequence of sets (A, : n € IN), such
that A, C A, 11 for all n. We observe that A 2 lim, A, = UyenAn and A, T Ae. We can define
disjoint sets (E, : n € IN), where E; = Ay and E,, = A, \ A,,_1 for all n > 2. The disjoint sets E,’s
satisfy Ul | E; = Ay, for all n € N and Uy E;, = U, A,. From the above property and the additivity
of probability set function over disjoint sets, it follows that

n
P(As) = P(U,Ey,) —nng(En) = iler&;P(EZ) 711161%1\1P(U121E1) ilerﬂr\lTP(An).

For continuity from below, we take a nonincreasing sequence of sets (A, : n € IN), such that
App1 C A, for all n. We can form nondecreasing sequence of sets (B, : n € IN) where B, = A{.
Then, the continuity from below follows from the continuity from above. Continuity of proba-
bility for general sequence of converging sets follows from the definition of limsup and liminf of
sequence of sets and the continuity of probability function from above and below.
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1.2 Independence
Definition 1.10. For a probability space (Q2,F,P), two events A, B € F are independent events if
P(ANB) =P(A)P(B).

Definition 1.11. Two sub-event spaces § and H are called independent if any pair of events (G, H) €
G x H are independent. That is, for all G € § and H € H, we have

P(GN H) = P(G)P(H).

1.3 Conditional Probability

Definition 1.12. Let (Q),F,P) be a probability space. For events A,B € F such that 1 > P(B) > 0, the
conditional probability of event A given event B is defined as

P(ANB)

P(A|B) = ———

2 Random variables

Definition 2.1. A real valued random variable X on a probability space ((),F, P) is a function X : Q2 — R
such that for every x € R, we have

X (—o0,x] 2 {weQ: X(w)<x} €T

Remark 3. Recall that the collection {(—oo,x]: x € R} generates the Borel o-algebra B(IR). Therefore, it
follows that X~ 1(B(R)) C 7, since set inverse map X! preserves complements, unions, and intersec-
tions.



Definition 2.2. For a random variable X defined on the probability space (Q2,F,P), we define ¢(X) is
the smallest o-algebra formed by the inverse mapping of Borel sets, i.e.

o(X) 2 a({Xﬁl(—oo,x] X € ]R})

Definition 2.3. A random variable X is independent of an event subspace &, if 0(X) and € are inde-
pendent event subspaces.

Definition 2.4. Two random variables X,Y defined on the same probability space are independent if
o(X) and ¢(Y) are independent event subspaces.

Definition 2.5. For a random variable X defined on probability space (Q2,F, P), the corresponding dis-
tribution function F : R — [0,1] is defined as

F(x) 2 (Po X 1)(—o0,x|, forall x € R.

Remark 4. Recall that probabilities are defined only for events. We note that o(X) is a sub-event space of
J and hence probability is defined for each element of o(X). In particular for a random variable X, the
probabilities are defined for generating events X ~!(—co,x] € F, and denoted by F(x) = P o X~ !(—c0,x]
for each x € R. It follows that for each event A € ¢(X), we can find the probability P(A) in terms of F.

Remark 5. Since 0(X) and o(Y) are generated by collections (X1 (—c0,x] : x € R) and (Y1 (—o0,y] : y €
R), it follows that the random variables X and Y are independent if and only if for all x,y € R, we have

Fxy(xy) = Fx(x)Fy (y)-
Theorem 2.6. Distribution function F of a random variable X : Q) — R is nonnegative, monotone nondecreasing,
continuous from the right, and has countable points of discontinuities. Further, if Po X 1(R) = 1, then

xg@mF(x) =0, xlg{}oF(x) =1.

Proof. Nonnegativity and monotonicity of distribution function follows from nonnegativity and mono-
tonicity of probability set function, and the fact that for x; < x

XY (—o00,x1] € X 1(—00,x3].

Let x, | Xo be a decreasing sequence of real numbers. We take decreasing sets A € N, where A, £

X~1(—00,x,] € F for n € N. Then A, | A, and the right continuity of distribution function follows
from the continuity from above of probability set functions. Countable discontinuities follow from the
fact that lim,_,. Fx(x) < 1. By taking sequences a, | —oo and b, 1 oo, we define sequence of mono-
tone sets A, = X~1(~c0,a,] | @ and B, £ X~1(—~00,b,] T Q. The result follow from the continuity of
probability function. O

Example 2.7. One of the simplest family of random variables are indicator functions 1 : F x (3 —
{0,1}. For each event A € F, we can define an indicator function as

1, weA,
]1A(w)_{0 wé A

We make the following observations.

1. 14 is a random variable for each A € F. This follows from the fact that

@, x<0,
]l;ll(—oo,x] =49 A x€e[0,1),
Q, x>1.

2. The distribution function F for the random variable 14 is given by

0, x <0,
F(x)={ P(A°), x€[0,1),
1, x> 1.



2.1 Expectation

Let ¢: R — R be a Borel measurable function, i.e. ¢~ !(—o0,x] € B(RR) for all x € R. Then, the expectation
of g(X) for a random variable X with distribution function F is defined as

Eg(X) = [ g(x)dF(x).
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Remark 6. The expectation is only defined for random variables. For an event A, the probability P(A)
equals expectation of the indicator random variable 1 4.

Remark 7. Since ¢(X) is generated by the collection (X~!(—o0,x] : x € R), it follows that X is indepen-
dent of € if and any if for all x € R and event E € €,

E[1{x<n1e] = PUX <x}NE) = P{X < x})P(E) = El{x< ) Elg.

3 Random Vectors

Definition 3.1. If X3, ..., X, are random variables defined on the same probability space (Q),F, P), then
the vector X = (Xy,...,Xy) is a random mapping Q) — IR” and is called a random vector.

Remark 8. Since each X; is a random variable, the joint event N;c(,] X;l(—oo, xj] € F. Thatis, ¢(X) £

o, {X._l(—oo,x,-] ‘x € ]R”}).
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Definition 3.2. We define projection operators 77; : R” — R as 77;(x) £ x; for any vector x € R".
Remark 9. We observe that 77, ' (—o0,x;] = {y € R" 1 y; < x;}.

Proposition 3.3. A random mapping X : Q — R" is a random vector if X1 (7r; 1 (—c0,x;]) € F for all i € [n]
and x; € R.

Proof. Recall that a random mapping X : O — R" is a random vector if 77;(X) is a random variable for
each i € [n]. Since Xfl(—oo, xi] =X"1o nfl(—oo, x;], the result follows. O

Remark 10. We observe that o/(X) = c(X "' o 7r; ! (—o0,x;] : x; € R,i € [n]).
Definition 3.4. The joint distribution of random vector X is defined for all x € R" as
Fx(X1,. . .,xn) £ p (ﬂie[n]lel(—oo,xi}) .

Definition 3.5. A random vector X : (3 — IR" is independent if the joint distribution is product of
marginals. That is,

n
Fx(x) =] [ Fx,(x;), forallx € R".
i=1

Definition 3.6. Two random vectors X, Y defined on the same probability space are independent if o (X)
and o (Y) are independent event subspaces.
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