
Lecture-07: Renewal Process

1 Counting processes

Definition 1.1. A right continuous stochastic process N : Ω → Z
R+
+ is a counting process if (a) N0 = 0 and

(b) the map t 7→ Nt is non-decreasing for each outcome ω ∈ Ω.

Lemma 1.2. A counting process has finitely many jumps in a finite interval (0, t].

Definition 1.3. A counting process is called simple if it has discontinuities of unit size.

Definition 1.4. The nth point of discontinuity of a simple counting process N is called the nth arrival
instant and is denoted by Sn : Ω → R+ such that S0 ≜ 0 and Sn ≜ inf{t ⩾ 0 : Nt ⩾ n} for all n ∈ N. The
random sequence of arrival instants is denoted by S : Ω → RN

+ .

Remark 1. The arrival sequence S is non-decreasing for each outcome ω ∈ Ω, since inf is non-decreasing
for decreasing sets. That is for any n ∈ N, we have {t ∈ R+ : Nt ⩾ n + 1} ⊆ {t ∈ R+ : Nt ⩾ n} from
monotonicity of counting processNt, and thus Sn ⩽ Sn+1 for all n ∈ N from monotonicity of inf.

Definition 1.5. The inter arrival time between (n − 1)th and nth arrival is denoted by Xn ≜ Sn − Sn−1.
The random sequence of inter arrival times is denoted by X : Ω → RN

+ .

Exercise 1.6. Show that P{Xn ⩽ 0} = 0 for simple counting processes.

Lemma 1.7 (Inverse processes). Inverse of a simple counting process N is its corresponding arrival process S.
That is,

{Sn ⩽ t} = {Nt ⩾ n} . (1)

Proof. Let ω ∈ {Sn ⩽ t}. Since N is a non-decreasing process, we have Nt ⩾ NSn = n. Conversely, let
ω ∈ {Nt ⩾ n}, then it follows from definition that Sn(ω)⩽ t.
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Figure 1: Sample path of a simple counting process.

Remark 2. Let F• = (Fs : s ⩾ 0) be the natural filtration associated with the counting process N, that is
Ft ≜ σ(Ns, s ∈ [0, t]). From (3), we have {Sn ⩽ t} ∈ σ(Nt)⊆ Ft for all t ∈ R+. It follows that S : Ω → RN

+
is a sequence of random times adapted to filtration F•.
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Corollary 1.8. The probability mass function for the counting process N sampled at time t can be written in
terms of distribution functions of arrival sequence S as

P{Nt = n} = FSn(t)− FSn+1(t).

Proof. The event {Nt ⩾ n} is the union of two disjoint events {Nt = n} ∪ {Nt ⩾ n + 1}, and the result
follows from the probability of disjoint unions.

Definition 1.9. A point process is a collection S : Ω → XN of randomly distributed points, such that
limn→∞ |Sn| = ∞. A point process is simple if the points are distinct. Let N(∅) = 0 and denote the
number of points in a measurable set A ∈ B(X) by

N(A) = ∑
n∈N

1{Sn∈A}.

Then N : Ω → Z
B(X)
+ is called a counting process for the simple point process S.

Remark 3. When X= R+, one can order these points of S as an increasing sequence such that Sn < Sn+1
for all n ∈ N. Further, we denote the number of points in a half-open interval (0, t] by

Nt ≜ N(0, t] = ∑
n∈N

1(0,t](Sn) = ∑
n∈N

1{Sn⩽t}.

Remark 4. General point processes in higher dimension don’t have any inter-arrival time interpretation.

Exercise 1.10. Show that P{Xn ⩽ 0} = 0 for simple point processes on R+.

2 Renewal processes

Definition 2.1 (Renewal Instants). Consider an i.i.d. sequence X : Ω → RN
+ of inter-renewal times and

denote the nth renewal instant by Sn ≜ ∑n
i=1 Xi for all n ∈ N, and S0 = 0. The random sequence S : Ω →

RN
+ is called sequence of renewal instants or renewal sequence.

Remark 5. We interpret Xn as the time between the (n − 1)th and the nth renewal event, with a common
distribution F. If F(0) = 1, then it is a trivial process. Hence we will often assume that F(0)< 1 to imply
a non-degenerate renewal process.

Example 2.2 (Random walk). Random walk S on R+ with i.i.d. non-negative step-sizes X : Ω → RN
+ is

a renewal sequence.

Example 2.3 (Markov chain). Let X : Ω → XZ+ be a discrete time homogeneous Markov chain X with
state space X. For X0 = x ∈ X and defining τ+

x (0)≜ 0, let the recurrent times be defined inductively as

τ+
x (k) = inf

{
kn > τ+

x (k − 1) : Xn = x
}

. (2)

It follows from the strong Markov property of the process X, that τ+
x : Ω → Z

Z+
+ is a renewal sequence.

Definition 2.4 (Renewal process). The associated counting process N : Ω → Z
R+
+ that counts number

of renewal until time t with i.i.d. general inter-renewal times is called a renewal process, written as

Nt ≜ sup{n ∈ Z+ : Sn ⩽ t} = ∑
n∈N

1{Sn⩽t}.

Definition 2.5. A renewal sequence S : Ω → RN
+ with i.i.d. inter-renewal times sequence X : Ω → RN

+
is said to be recurrent if the inter-renewal time X1 is finite almost surely, the sequence is called transient
otherwise. A renewal sequence S : Ω → RN

+ is said to be positive recurrent if the inter-renewal time X1
has finite mean.
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Remark 6. We will mostly be interested in a positive recurrent renewal process, and hence we will often
assume that the mean µ = EX1 =

∫
R+

xdF(x) is finite.

Definition 2.6. The renewal process is said to be periodic with period d if the i.i.d. inter-renewal times
X : Ω → XN take values in a discrete set X⊆ {nd : n ∈ Z+} and d = gcd(X) is the largest such number.
Otherwise, if there is no such d > 0, then the renewal process is said to be aperiodic. If the inter-arrival
time X1 is a periodic random variable, then the associated distribution function F is called lattice.

Lemma 2.7 (Finiteness). For a renewal sequence with mean inter-renewal time EX1 > 0, the number of re-
newals Nt in the time duration (0, t] is a.s. finite for all t ∈ R+.

Proof. We are interested in knowing the number of renewals per unit time. For each n ∈ N, the inter-
renewal time Xn is non-negative, and hence mean µ = EXn = E |Xn|.

If µ = ∞, then P{Xn < ∞}< 1 and we define N ≜ inf{n ∈ N : Sn = ∞}. It follows that Nt ⩽ N for all
times t ∈ R+. We further observe that P{N = n}= P{X1 < ∞}n−1 P{X1 = ∞} and hence P{N ∈ N}=
1, i.e. Sn = ∞ almost surely for some finite n ∈ N. Hence, Nt is almost surely finite for all t ∈ R+.

Therefore, we assume that µ < ∞ without any loss of generality. It follows from the L1 strong law of
large numbers that

P
{

lim
n∈N

Sn

n
= µ

}
= 1.

Since µ > 0 from the hypothesis, we must have Sn growing arbitrarily large as n increases. Thus, Sn can
be finite for at most finitely many n. Indeed for any finite t, we have the the following set inclusion

⋂
n∈N

{Nt ⩾ n} =
⋂

n∈N

{Sn ⩽ t} ⊆
⋂

n∈N

{
Sn

n
⩽

t
n

}
⊆

{
lim sup

n∈N

Sn

n
= 0

}
.

Since µ > 0, we obtain
{

limsupn∈N
Sn
n = 0

}
⊆

{
limn∈N

Sn
n = µ

}c
, it follows that P{Nt = ∞} = 0.

Remark 7. Since the number of renewals Nt in any finite duration (0, t] is finite for any t ∈ R+, we can
replace supremum by maximum, and Nt = max{n ∈ N : Sn ⩽ t}.

Exercise 2.8. Show that for sequences x ∈ RN and α ∈ RN, if xn ⩽ αn for all n ∈ N, then
limsupn xn ⩽ limsupn αn.

2.1 Delayed renewal processes

Many times in practice, we have a delayed start to a renewal sequence. That is, the renewal seqence has
independent inter renewal times X : Ω → RN

+ , where the common distribution for Xn is F when n ⩾ 2,
and the distribution of first inter-arrival time X1 is G. Similar to the renewal sequence, the initial renewal
instant is assumed to be S0 = 0 and the nth renewal instant is Sn ≜ ∑n

i=1 Xi for all n ∈ N. The associated
counting process is called a delayed renewal process and denoted by ND : Ω →Z

R+
+ . The following inverse

relationship continues to hold between the counting process and the renewal sequence,{
ND(t)⩾ n

}
= {Sn ⩽ t} . (3)

Example 2.9 (Markov chain). Let X : Ω → XZ+ be a discrete time homogeneous Markov chain. For
X0 = x ∈ X and y ̸= x, we define τ+

y (0)≜ 0. We inductively define the kth visit time to state y as

τ+
y (k)≜ inf

{
n > τ+

y (k − 1) : Xn = y
}

.

It follows from the strong Markov property of the process X, that τ+
y : Ω → Z

Z+
+ is a delayed renewal

sequence.
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Exercise 2.10. Consider a delayed renewal sequence with positive mean inter-renewal duration
EXn > 0 for n ⩾ 2. Show that the number of renewals ND

t in the time duration (0, t] is almost
surely finite for all finite t ∈ R+.

A Strong Markov property of renewal process

Proposition A.1. Let N : Ω → Z
R+
+ be the renewal process associated with a renewal sequence S : Ω → RN

+ . For
the inter renewal time sequence X : Ω → RN

+ , we define Gm ≜ σ(X1, . . . , Xm) for each m ∈ N to define its natural
filtration G• ≜ (Gm : m ∈ N). Then the random vector (NSm+t1 − NSm , . . . , NSm+tn − NSm) is independent of
Gm and has the same joint distribution as (Nt1 , . . . , Ntn).

Proof. Recall that {Nt = k} = {Sk ⩽ t,Sk+1 > t}, and hence we can write

{NSm+t − NSm = k} = {Sm+k ⩽ Sm + t < Sm+k+1} .

We observe that Gm = σ(S1, . . . ,Sm) since S and X have a bijection. Further, we observe that Sm+k − Sm
is independent of Gm and has the same distribution as Sk for all k ⩾ 0. Thus, we can write

P(
n⋂

i=1

{
NSm+ti − NSm = ki

}
| Gm) = P(

n⋂
i=1

{
Sm+ki

− Sm ⩽ ti < Sm+ki−1 − Sm
}
| Gm) = P(

n⋂
i=1

{Nti = ki}).
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