Lecture-08: Distribution and renewal functions

1 Convolution of distribution functions

Definition 1.1. For two distribution functions F,G € [0,1]]R the convolution of F and G is a distribution
function F * G € [0,1]R defined as (F x G)(x) & fyG]RF(x —1)dG(y) for each x € R.

Lemma 1.2. Let F,G € [0, l]R, then the convolution F x G is a distribution function.

Proof. It suffices to show that the function (F % G) is

(a) right continuous, i.e. lim,, |,(F * G)(x;,) exists,

(b) nondecreasing, i.e. (F*G)(z) > (FxG)(x) forall z > x,

(c) having left limit of zero and right limit of unity, i.e. limy_ o (F * G)(x) = 0,limy_0o(F * G)(x) = 1.
Part (a) and (c) can be verified by exchanging limit and integration using monotone convergence theo-
rem. Part (b) can be verified from monotonicity of integration. O

Lemma 1.3. Convolution is a symmetric and bi-linear operator.

Proof. We note that for any F,G € [0,1]R, we have (F,G) £ F x G.

(a) Symmetry. Let F,G € [O,l]lR be distribution functions. Then, it suffices to show that F * G = G * F.
To this end, exchanging order of integration from Fubini’s theorem for nonnegative functions and
changing variables, we obtain

/yE]RF(x — y)dG(y) = ./yeR ‘/l;gx_ydP(u)dG(y) - ./;GR dF (u) /ygx_udG(y) _ /ueR dF(1)G (x — u).

(b) Bilinearity. It suffices to show for any two finite sets of distribution functions (F; € [0,1]R : i € [n])
and (G;j € [0,1]® : j € [m]) and vectors & € M([n]),p € M([m]), we have

( Z} “iFi) * ( Z ‘B]G]) = ZH 'Z[:]uciﬁj(ﬁ- * G])
ie(n)jem

ie[n j€m]

This follows from the linearity of integration in its arguments.
O

Lemma 1.4. Let X and Y be two independent random variables defined on the probability space (Q, F, P) with
distribution functions F and G respectively, then the distribution of X + Y is given by F x G.

Proof. The distribution function of sum X + Y is denoted by H € [0,1]R where H(z) £ E1 (X+y<z) for
any z € R. It follows from the tower property of conditional expectation and independence of X and Y
that

H(z) = E[E[1{xy<zlo(V)]] = E[F(z - Y)] = /ye]R+ F(z = y)dG(y).
O

Definition 1.5. Consider a real valued random walk S : Q — RN with i.i.d. step size sequence X : Q —
RN, defined as S,, & 1 X; for all n € IN. We denote the distribution of X; by F and the distribution of
Su by Fy, ie. Fy(t) e P{S, <t} forallteR.

Remark 1. The distribution F, is computed inductively as F, = F,,_1 * F for all n > 2, where F; = F.

Remark 2. For a renewal sequence S : Q) — R with i.id. inter renewal time sequence X : QO — RN
having a common distribution F € [0,1]R+, the distribution function of the nth renewal instant is the
n-fold convolution F,; of the distribution function F.



Example 1.6 (Poisson process). Consider a renewal sequence S : QO — R with i.i.d. inter renewal

times X : O — R having a common exponential distribution F € [0,1]R+ defined as F(x) £1 —e~*
for any x € R and rate A € R;.. We will show by induction that the distribution of nth renewal

instant at any time t € R, is
t pngn—1
Fu(t) é/ e~ Mds.
0 !

We first observe that the statement holds true for base case of n = 1, since F; (t) = fot Ae~Mds =

1—e M=F(t) forall t € R;. We assume that the hypothesis holds true for step 1 — 1, and compute
F, = F,,_1 * F written as

t

Eu(t) = /;OF(t—S)anfl(S) :A'H/O (e ‘ew)d(n —1)!
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The equality in the second line of the above equation follows from the integration by parts.

Corollary 1.7. The distribution function of nth arrival instant Sy, for delayed renewal sequence is G * F,_1.

Corollary 1.8. The distribution function of counting process NP : Q) — ZE* for the delayed renewal sequence
is
P{NP =n} = P{Sy <t} = P{Su1 <t} = (G Fu1)(t) = (G F:)(t).

2 Renewal functions

Definition 2.1. Mean of the counting process N : (3 — ZE* is called the renewal function denoted by
me IRIE+ defined by m; £ E[N¢] for all t € R

Proposition 2.2. Renewal function m € ]R]1+h for a renewal process N : () — ZE* is my =Y _,en Fu(t) for all
t € Ry, where the distribution of renewal instant Sy, is denoted by F, € [0,1]R+ for each n € N.

Proof. Using the inverse relationship between counting process and the arrival instants, we can write

my=E[N]= Y P{N;2n}=) P{S,<t}=) Fu(t).
nelN nelN nelN
For the second inequality in the above equation, we observe that EN; = E}_, N Y1 L{n,—m}- Switch-
ing the order of summations and using monotone convergence theorem to exchange expectation and
infinite sum, we obtain EN; = EYen Cinzn Lin=m} = EXnenN LiN,2n} = Lnen P{N: > n}. O

Example 2.3 (Poisson process). Consider the renewal sequence S : Q — RY with i.i.d. inter renewal
times X : O — R having a common exponential distribution F € [0,1]R+ defined as F(x) £1 — e~

for any x € Ry and rate A € IR. The associate renewal function with this renewal sequence is

me=Y_ Fn(t):/ot)\(ef)‘s Y %)ds:/ot)\ds:/\t.

nelN nez

Corollary 2.4. The renewal function mP € ]Rﬁ+ for a delayed renewal process NP : Q) — ZE* with distribution
G € [0,1]R+ for the first inter renewal time Xy and common distribution F € [0,1]R+ for inter renewal times X,
for n > 2, is given by mP = G + G x m.

Proof. We can write the renewal function for the delayed renewal process as mP = ENP = ¥, . (G *
Fiq)(t) = G(t) + (G xm)(t). O

Remark 3. 1f G = F, then we have the identity m = F + F x m.



3 Laplace transform of distribution functions and renewal functions

Definition 3.1. The Laplace transform £ : [0,1]®R — C€ for a distribution function F € [0,1]R is a map
LF € C€ defined for all s € C such that | L (s)| < oo, as

Lp(s) 2 /y O VE(y).

Remark 4. If X : Q) — R is a random variable with distribution function F, then £f(s) = Ee*%,

Lemma 3.2. The Laplace transform of convolution of two distribution functions is product of Laplace transform
of individual distribution functions, i.e. if F,G € [0,1]R are distribution functions, then Lr,c = LpLg.

Proof. Let F,G € [0,1]R be two distribution functions, then d(F * G)(x) = fyeIR dF(x — y)dG(y) from

exchange of limits and integration using monotone convergence theorem. Applying Fubini’s theorem
to change order of integration of nonnegative integrands, we obtain

Crcls)= [ e [ dF(x-ydGly) = [ e Gy [ e VdF(x—y) = Lrte.
x€R yER yER x—y€eR
Alternatively, consider two independent random variables X,Y with distributions F,G respectively.
Then the distribution of X 4 Y is F * G and £Lp,¢(s) = Ee *X+Y) = Ee~5XEe~sY = (LrLg)(s) for any
s € C such that |Lr(s)]|£Lg(s)| < . O

Remark 5. Consider a renewal sequence S : Q — RN with i.i.d. inter renewal time sequence X : Q — RN
having a common distribution function F. The Laplace transform of the distribution of nth renewal
instant Sy, is £, = L.

Corollary 3.3. The Laplace transform of the renewal function m € ]R]EJr is given by L, = 1_L—£F defined for each
s € Csuch that |Lp(s)| < 1.

Corollary 3.4. The Laplace transform of the renewal function m® for the delayed renewal process is £,,p = 157&

defined for each s € C such that |Lp(s)| < 1.

Example 3.5 (Poisson process). The Laplace transform of an exponential distribution F € [0,1]R+ de-
fined as F(x) £ 1 — ¢~ for x € R; and rate A € R is given by Lf(s) = /\%rs for R(s) > —A. Consider a
renewal sequence S with 7.i.d. inter renewal times having the common exponential distribution F. The

—n
Laplace transform for the distribution F, of nth renewal instant is given by L, (s) = (1 + %) for all
s € C such that —R(s) < A. The Laplace transform for the renewal function for renewal sequence S is

Lo(s) = Lr(s)

A
—ﬁp(s)—gforallse{re(:.—%(r)<)\<|A+r|}.

That is, if s = 0 + jw for o,w € R, then —o < A and A< A+ (7)2 + w?. We observe that it suffices that
og>0o0rw > A.

—n
Exercise 3.6. Invert the Laplace transform Lp, (s) = (1 + %) in the region of convergence

{s €C: —R(s) < A <|A +s|} to obtain the distribution function F, for the nth arrival instant of
a Poisson process with rate A.

Proposition 3.7. For renewal sequence S with i.i.d. inter renewal times having positive common mean EX; >0,
the renewal function is bounded for all finite times.

Proof. Since EX; > 0 and Xj > 0, it follows that P{X; =0} < 1. From the continuity of probability,
there exists « > 0 and € (0,1), such that P{X,, > a} = . We define a map g, : Ry — {0,a} such that

gu(x) 2 al {x>a} for all x € Ry. We observe that g,(x) < x. We can define bivariate random sequence
X:Q — {0,a}N where X, £ ¢,(X,) for all n € N. It follows that X is i.i.d. with probability mass



function P{X; =0} = P{X; <a} =1— Band P{X; = a} = B. Further, since g.(x) < x, it follows that
Xy < Xy Itfollows that S, £ Y7 | X; <Y, X; = Sy, and hence {S, <t} C {S, <t} foreachn € N and
teRy. Let N: Q) — ZE* denote the renewal counting process with i.i.d. inter arrival time sequence

X:Q — {0,a}N with arrivals $: O — {da :d € Z, }N at integer multiples of «. Then, it follows that for
all sample paths and all times t € R,

nelN nelN

Hence, it follows that m; = EN; < EN;, and to show finiteness of m; it suffices to show that renewal
function 77; = EN; associated with quantized inter renewal time is finite at any time t € R.

We observe that {No =no} = {Ng =19, N, > 1} = N, {X; =0} N {X,;,+1 = a}. We define M; £

Z}:O nj and observe that {5, — Sy =0} = N7, ., {X; = 0}. Hence, we write

{No =19, Ny = nl} = {No =19, Ny =n1,Npy > 1} = {§M0 = 0,5M0+1 = 06} N {S_Ml = ‘X/S_M1+1 = 206}

My M
={Xi=0n{Xmyr1=0a} [ {Xi=0}n{Xp,41=2}.
=1 i:M0+2

We can write the joint event of number of arrivals n; at each arrival instant in i for i € {0,...,k — 1}, as

k-1 k—1 k-1
m {Nizx = 1’11'} = ﬂ {Nizx = Tli} N {thx = 1} = m {S_M, = Z'{X,S_Mlqu =(i+ 1)&}
i=0 i=0 i=0
Moy k—1 M;
Zﬂ{xizo}ﬂ{XM0+1=“}ﬂ< N {Xizo}m{XM]-+1:D‘})-
i=1 j=1 " i=M;_1+2

It follows that the joint distribution of number of arrivals at first k arrival instants is
k=1 k-1
P (ﬂ {Nia = ”i}> =1-pIlEa-pnt
i—=0 i=0

It follows that the number of arrivals is independent at each arrival instant ka and geometrically dis-
tributed over IN with mean 1/ for k € N and over Z with mean (1 — )/ for k = 0 respectively.
Thus, forall t > 0,

H <it 1

p p

R
R

EN; < ]ENt < < Q.

O

Corollary 3.8. For delayed renewal sequence with IEX, > 0, the renewal function is bounded at all finite times.
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