
Lecture-08: Distribution and renewal functions

1 Convolution of distribution functions

Definition 1.1. For two distribution functions F, G ∈ [0,1]R the convolution of F and G is a distribution
function F ∗ G ∈ [0,1]R defined as (F ∗ G)(x)≜

∫
y∈R

F(x − y)dG(y) for each x ∈ R.

Lemma 1.2. Let F, G ∈ [0,1]R, then the convolution F ∗ G is a distribution function.

Proof. It suffices to show that the function (F ∗ G) is
(a) right continuous, i.e. limxn↓x(F ∗ G)(xn) exists,
(b) nondecreasing, i.e. (F ∗ G)(z)⩾ (F ∗ G)(x) for all z ⩾ x,
(c) having left limit of zero and right limit of unity, i.e. limx→−∞(F ∗ G)(x) = 0, limx→∞(F ∗ G)(x) = 1.
Part (a) and (c) can be verified by exchanging limit and integration using monotone convergence theo-
rem. Part (b) can be verified from monotonicity of integration.

Lemma 1.3. Convolution is a symmetric and bi-linear operator.

Proof. We note that for any F, G ∈ [0,1]R, we have ∗(F, G)≜ F ∗ G.
(a) Symmetry. Let F, G ∈ [0,1]R be distribution functions. Then, it suffices to show that F ∗ G = G ∗ F.

To this end, exchanging order of integration from Fubini’s theorem for nonnegative functions and
changing variables, we obtain∫

y∈R
F(x − y)dG(y) =

∫
y∈R

∫
u⩽x−y

dF(u)dG(y) =
∫

u∈R
dF(u)

∫
y⩽x−u

dG(y) =
∫

u∈R
dF(u)G(x − u).

(b) Bilinearity. It suffices to show for any two finite sets of distribution functions (Fi ∈ [0,1]R : i ∈ [n])
and (Gj ∈ [0,1]R : j ∈ [m]) and vectors α ∈M([n]), β ∈M([m]), we have(

∑
i∈[n]

αiFi
)
∗
(

∑
j∈[m]

β jGj
)
= ∑

i∈[n]
∑

j∈[m]

αiβ j(Fi ∗ Gj).

This follows from the linearity of integration in its arguments.

Lemma 1.4. Let X and Y be two independent random variables defined on the probability space (Ω,F, P) with
distribution functions F and G respectively, then the distribution of X + Y is given by F ∗ G.

Proof. The distribution function of sum X + Y is denoted by H ∈ [0,1]R where H(z) ≜ E1{X+Y⩽z} for
any z ∈ R. It follows from the tower property of conditional expectation and independence of X and Y
that

H(z) = E[E[1{X+Y⩽z}|σ(Y)]] = E[F(z − Y)] =
∫

y∈R+

F(z − y)dG(y).

Definition 1.5. Consider a real valued random walk S : Ω → RN with i.i.d. step size sequence X : Ω →
RN, defined as Sn ≜ ∑n

i=1 Xi for all n ∈ N. We denote the distribution of X1 by F and the distribution of
Sn by Fn, i.e. Fn(t)≜ P{Sn ⩽ t} for all t ∈ R.

Remark 1. The distribution Fn is computed inductively as Fn = Fn−1 ∗ F for all n ⩾ 2, where F1 = F.

Remark 2. For a renewal sequence S : Ω → RN
+ with i.i.d. inter renewal time sequence X : Ω → RN

+

having a common distribution F ∈ [0,1]R+ , the distribution function of the nth renewal instant is the
n-fold convolution Fn of the distribution function F.

1



Example 1.6 (Poisson process). Consider a renewal sequence S : Ω → RN
+ with i.i.d. inter renewal

times X : Ω →RN
+ having a common exponential distribution F ∈ [0,1]R+ defined as F(x)≜ 1− e−λx

for any x ∈ R+ and rate λ ∈ R+. We will show by induction that the distribution of nth renewal
instant at any time t ∈ R+ is

Fn(t)≜
∫ t

0

λnsn−1

(n − 1)!
e−λsds.

We first observe that the statement holds true for base case of n = 1, since F1(t) =
∫ t

0 λe−λsds =
1− e−λt = F(t) for all t ∈ R+. We assume that the hypothesis holds true for step n− 1, and compute
Fn = Fn−1 ∗ F written as

Fn(t) =
∫ t

s=0
F(t − s)dFn−1(s) = λn−1

∫ t

0
(e−λs − e−λt)d

sn−1

(n − 1)!

= λn−1(e−λs − e−λt)
sn−1

(n − 1)!

∣∣∣t
s=0

+
∫ t

0

λnsn−1

(n − 1)!
e−λsds.

The equality in the second line of the above equation follows from the integration by parts.

Corollary 1.7. The distribution function of nth arrival instant Sn for delayed renewal sequence is G ∗ Fn−1.

Corollary 1.8. The distribution function of counting process ND : Ω → Z
R+
+ for the delayed renewal sequence

is
P
{

ND
t = n

}
= P{Sn ⩽ t} − P{Sn+1 ⩽ t} = (G ∗ Fn−1)(t)− (G ∗ Fn)(t).

2 Renewal functions

Definition 2.1. Mean of the counting process N : Ω → Z
R+
+ is called the renewal function denoted by

m ∈ R
R+
+ defined by mt ≜ E[Nt] for all t ∈ R+.

Proposition 2.2. Renewal function m ∈ R
R+
+ for a renewal process N : Ω → Z

R+
+ is mt = ∑n∈N Fn(t) for all

t ∈ R+, where the distribution of renewal instant Sn is denoted by Fn ∈ [0,1]R+ for each n ∈ N.

Proof. Using the inverse relationship between counting process and the arrival instants, we can write

mt = E[Nt] = ∑
n∈N

P{Nt ⩾ n} = ∑
n∈N

P{Sn ⩽ t} = ∑
n∈N

Fn(t).

For the second inequality in the above equation, we observe that ENt = E∑m∈N ∑m
n=11{Nt=m}. Switch-

ing the order of summations and using monotone convergence theorem to exchange expectation and
infinite sum, we obtain ENt = E∑n∈N ∑m⩾n1{Nt=m} = E∑n∈N1{Nt⩾n} = ∑n∈N P{Nt ⩾ n}.

Example 2.3 (Poisson process). Consider the renewal sequence S : Ω → RN
+ with i.i.d. inter renewal

times X : Ω → RN
+ having a common exponential distribution F ∈ [0,1]R+ defined as F(x) ≜ 1 − e−λx

for any x ∈ R+ and rate λ ∈ R+. The associate renewal function with this renewal sequence is

mt = ∑
n∈N

Fn(t) =
∫ t

0
λ
(

e−λs ∑
n∈Z+

(λs)n

n!

)
ds =

∫ t

0
λds = λt.

Corollary 2.4. The renewal function mD ∈ R
R+
+ for a delayed renewal process ND : Ω → Z

R+
+ with distribution

G ∈ [0,1]R+ for the first inter renewal time X1 and common distribution F ∈ [0,1]R+ for inter renewal times Xn
for n ⩾ 2, is given by mD = G + G ∗ m.

Proof. We can write the renewal function for the delayed renewal process as mD
t = END

t = ∑n∈N(G ∗
Fn−1)(t) = G(t) + (G ∗ m)(t).

Remark 3. If G = F, then we have the identity m = F + F ∗ m.
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3 Laplace transform of distribution functions and renewal functions

Definition 3.1. The Laplace transform L : [0,1]R → CC for a distribution function F ∈ [0,1]R is a map
LF ∈ CC defined for all s ∈ C such that |LF(s)| < ∞, as

LF(s)≜
∫

y∈R
e−sydF(y).

Remark 4. If X : Ω → R is a random variable with distribution function F, then LF(s) = Ee−sX .

Lemma 3.2. The Laplace transform of convolution of two distribution functions is product of Laplace transform
of individual distribution functions, i.e. if F, G ∈ [0,1]R are distribution functions, then LF∗G = LFLG.

Proof. Let F, G ∈ [0,1]R be two distribution functions, then d(F ∗ G)(x) =
∫

y∈R
dF(x − y)dG(y) from

exchange of limits and integration using monotone convergence theorem. Applying Fubini’s theorem
to change order of integration of nonnegative integrands, we obtain

LF∗G(s) =
∫

x∈R
e−sx

∫
y∈R

dF(x − y)dG(y) =
∫

y∈R
e−sydG(y)

∫
x−y∈R

e−s(x−y)dF(x − y) = LFLG.

Alternatively, consider two independent random variables X,Y with distributions F, G respectively.
Then the distribution of X + Y is F ∗ G and LF∗G(s) = Ee−s(X+Y) = Ee−sXEe−sY = (LFLG)(s) for any
s ∈ C such that |LF(s)| |LG(s)| < ∞.

Remark 5. Consider a renewal sequence S : Ω → RN
+ with i.i.d. inter renewal time sequence X : Ω → RN

having a common distribution function F. The Laplace transform of the distribution of nth renewal
instant Sn is LFn = Ln

F.

Corollary 3.3. The Laplace transform of the renewal function m ∈ R
R+
+ is given by Lm = LF

1−LF
defined for each

s ∈ C such that |LF(s)| < 1.

Corollary 3.4. The Laplace transform of the renewal function mD for the delayed renewal process is LmD = LG
1−LF

defined for each s ∈ C such that |LF(s)| < 1.

Example 3.5 (Poisson process). The Laplace transform of an exponential distribution F ∈ [0,1]R+ de-
fined as F(x)≜ 1− e−λx for x ∈ R+ and rate λ ∈ R+ is given by LF(s) = λ

λ+s for ℜ(s)>−λ. Consider a
renewal sequence S with i.i.d. inter renewal times having the common exponential distribution F. The

Laplace transform for the distribution Fn of nth renewal instant is given by LFn(s) =
(

1 + s
λ

)−n
for all

s ∈ C such that −ℜ(s) < λ. The Laplace transform for the renewal function for renewal sequence S is

Lm(s) =
LF(s)

1 −LF(s)
=

λ

s
for all s ∈ {r ∈ C : −ℜ(r) < λ < |λ + r|} .

That is, if s = σ + jω for σ,ω ∈ R, then −σ < λ and λ2 < (λ + σ)2 + ω2. We observe that it suffices that
σ > 0 or ω > λ.

Exercise 3.6. Invert the Laplace transform LFn(s) =
(

1 + s
λ

)−n
in the region of convergence

{s ∈ C : −ℜ(s) < λ < |λ + s|} to obtain the distribution function Fn for the nth arrival instant of
a Poisson process with rate λ.

Proposition 3.7. For renewal sequence S with i.i.d. inter renewal times having positive common mean EX1 > 0,
the renewal function is bounded for all finite times.

Proof. Since EX1 > 0 and X1 ⩾ 0, it follows that P{X1 = 0} < 1. From the continuity of probability,
there exists α > 0 and β ∈ (0,1), such that P{Xn ⩾ α} = β. We define a map gα : R+ → {0,α} such that
gα(x) ≜ α1{x⩾α} for all x ∈ R+. We observe that gα(x) ⩽ x. We can define bivariate random sequence

X̄ : Ω → {0,α}N where X̄n ≜ gα(Xn) for all n ∈ N. It follows that X̄ is i.i.d. with probability mass
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function P{X̄1 = 0} = P{X1 < α} = 1 − β and P{X̄1 = α} = β. Further, since gα(x)⩽ x, it follows that
X̄n ⩽ Xn. It follows that S̄n ≜ ∑n

i=1 X̄i ⩽ ∑n
i=1 Xi = Sn, and hence {Sn ⩽ t} ⊆

{
S̄n ⩽ t

}
for each n ∈ N and

t ∈ R+. Let N̄ : Ω → Z
R+
+ denote the renewal counting process with i.i.d. inter arrival time sequence

X̄ : Ω →{0,α}N with arrivals S̄ : Ω →{dα : d ∈ Z+}N at integer multiples of α. Then, it follows that for
all sample paths and all times t ∈ R+,

Nt = ∑
n∈N

1{Sn⩽t} ⩽ ∑
n∈N

1{S̄n⩽t} = N̄t.

Hence, it follows that mt ≜ ENt ⩽ EN̄t, and to show finiteness of mt it suffices to show that renewal
function m̄t ≜ EN̄t associated with quantized inter renewal time is finite at any time t ∈ R+.

We observe that {N̄0 = n0} = {N̄0 = n0, N̄α ⩾ 1} = ∩n0
i=1 {X̄i = 0} ∩

{
X̄n0+1 = α

}
. We define Mi ≜

∑i
j=0 nj and observe that

{
S̄n − S̄k = 0

}
= ∩n

i=k+1 {X̄i = 0}. Hence, we write

{N̄0 = n0, N̄α = n1} = {N̄0 = n0, N̄α = n1, N̄2α ⩾ 1} =
{

S̄M0 = 0, S̄M0+1 = α
}
∩
{

S̄M1 = α, S̄M1+1 = 2α
}

=
M0⋂
i=1

{X̄i = 0} ∩
{

X̄M0+1 = α
} M1⋂

i=M0+2
{X̄i = 0} ∩

{
X̄M1+1 = α

}
.

We can write the joint event of number of arrivals ni at each arrival instant in iα for i ∈ {0, . . . ,k − 1}, as

k−1⋂
i=0

{N̄iα = ni} =
k−1⋂
i=0

{N̄iα = ni} ∩ {N̄kα ⩾ 1} =
k−1⋂
i=0

{
S̄Mi = iα, S̄Mi+1 = (i + 1)α

}
=

M0⋂
i=1

{X̄i = 0}
⋂{

X̄M0+1 = α
} k−1⋂

j=1

( Mj⋂
i=Mj−1+2

{X̄i = 0} ∩
{

X̄Mj+1 = α
})

.

It follows that the joint distribution of number of arrivals at first k arrival instants is

P

(
k−1⋂
i=0

{N̄iα = ni}
)
= (1 − β)

k−1

∏
i=0

(β)(1 − β)ni−1.

It follows that the number of arrivals is independent at each arrival instant kα and geometrically dis-
tributed over N with mean 1/β for k ∈ N and over Z+ with mean (1 − β)/β for k = 0 respectively.
Thus, for all t ⩾ 0,

ENt ⩽ EN̄t ⩽
⌈ t

α ⌉
β

⩽
t
α + 1

β
< ∞.

Corollary 3.8. For delayed renewal sequence with EX2 > 0, the renewal function is bounded at all finite times.
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