Lecture-09: Limit Theorems

1 Growth of renewal counting processes

Consider a renewal sequence S : QO — R with i.i.d. inter renewal time sequence X : O — R such that
Sy & Y. 1 X; for each n € IN. The associated renewal counting process N : Q) — ZE* is defined as N; =
Ynen 1ys, <ty and renewal function m € ]R]I_i+ is defined as m; 2 ENj forallt € Ry. Let Fo 2 (F,,: n € N)
be the natural filtration for process X, such that F, £ o(X,...,X,) for each n € N.

Lemma 1.1. If X; has finite mean, then Neo = limy_o N} is almost surely infinite.

Proof. Since E[X,] < o0 and X, > 0, it follows that P {X,, = co} = 0. Further, we observe that

P{New<oo} =P( |J {No<}) =P( | {Su=00}) =P( | {Xu=0}) < ¥ P{Xy =c0} =0.
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Corollary 1.2. If the first renewal instant and subsequent inter renewal times for a delayed renewal processes
ND have finite means, then P {limHoo NtD = oo} =1.

Proof. For each n € IN, the inter renewal time X,, is positive and has finite mean, and hence is finite
almost surely. Therefore, P{Ne < 00} <Y ,,cn P{ Xy = o0} =0. |

1.1 Growth of counting process

We observed that the number of renewals N; increases to infinity with the length of the duration t. We
will show that the growth of N; is asymptotically linear with time f, and we will find this coefficient of
linear growth of N; with time ¢.

Theorem 1.3 (Strong law for renewal process). lim;_ o, N;/t = 1/EX; almost surely.

Proof. We first consider the case when IEX] = co. It follows that a = P {X; < o0} < 1and hence P {Ne =1} =
a"(1—w) for all n € Z . It follows that Uycz, {Neo =1} = Upez, {Neo < 1} is an almost sure event,
and hence limy_,c N¢/t = 0 almost surely.

Next, we assume that 0 < EX; < co. For this case, lim; .. N} = oo almost surely from Lemma
We note that Sy, <t < Sy,+1, and dividing by N;, we get
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Since lim; ;00 N} = 00 almost surely, we have lim; e le =limy, e 57” and lim;_,eo A{f]r“ =limy, e S”n* 1
almost surely. The result follows from L! strong law of large numbers. O

Corollary 1.4. For a delayed renewal process with finite EX,, we have lim;_,oo NP /t = 1/EX,.

Proof. From L! strong law of large numbers, we observe that lim,c S, /1 = EXj, and the result follows.
O
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Figure 1: Time of last renewal

Example 1.5. Suppose, you are in a casino with infinitely many games. We assume that X : (3 —
[0,1]N is an i.i.d. uniform sequence where X; is the random probability of win in the game i € IN.
One can continue to play a game or switch to another one. We are interested in a strategy that
maximizes the long-run proportion of wins. Let N(n) denote the number of losses in n plays.
Then the fraction of wins Py (n) is given by Py (n) = % We pick a strategy where any game is
selected to play, and continue to be played till the first loss. We show that lim, e Pyy (1) = 1 for this
proposed strategy. Let T; be the number of times a game i is played. We observe that the conditional
probability mass function for the number of plays for each game i is geometrically distributed as

E[lir_ |o(X)] =X 1(1-X;), keN.
Hence, it follows that T; are i.i.d. random variables with mean ET; = E[E[T; | X;]] = E [%X,} = o0.
It follows that each loss is a renewal event, and from the strong law of renewal process, we obtain
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1.2 Growth of renewal function

Basic renewal theorem implies N;/t converges to 1/[EX; almost surely. We are next interested in con-
vergence of the ratio m;/f. Note that this is not obvious, since almost sure convergence doesn’t imply
convergence in mean. To illustrate this, we have the following example.

Example 1.6. Consider a Bernoulli random sequence X : Q0 — {0,1}" with probability P {X,, =1} =
%, and another random sequence Y : () — Zﬂf defined as Y,, £ nX,, for n € N. Then, P {Y,=0} =
1— 1. Thatis Y, — 0as. However, E[Y,] =1 foralln € N. So E[Y,,] — 1.

Even though, basic renewal theorem does NOT imply it, we show that m;/t converging to 1/[EX;.

Proposition 1.7 (Wald’s Lemma for renewal process). If EX; € (0,00), then N; + 1 is a stopping time
adapted to F,, and ]EZ?LH X, =1 +m)EX;.

Proof. Recall that N; is almost surely finite if EX; > 0. We fix n € IN, and observe that
n—1 n—1
(Ne+1=n}={S 1 <t<Sy}=¢ )Y X;<t< ) Xi+Xpp€o(Xy,...,Xn) = Fn.
i=1 i=1

Thus N; + 1 is a stopping time adapted to J,, and the result follows from Wald’s Lemma. O



Theorem 1.8 (Elementary renewal theorem). If[EX; < oo, then lim; o m;/t =1/EXj.

Proof. By the assumption, we have mean y = EX; < co.

(a)

(b)

Taking expectations on both sides of Sy,4+1 >t and using Wald’s Lemma for renewal processes in
Proposition[L.7, we have p(m; + 1) > t. Dividing both sides by yt and taking liminf on both sides,
we get liminf; yoom;/t 21/ .

We employ a truncated random variable argument to show the reverse inequality. We define trun-
cated inter renewal times X : ) — [0, M]]N defined as X,, £ X,, A M for each n € N, and with common
mean denoted by pp £ EX; A M. Since X is i.i.d. , so is the truncated sequence X, and hence we
can define the corresponding renewal sequence $: Q) — RN as S, £Y " | X; for each n € N, and the
counting process N: Q = ZN as N, £ Y, o ]l{s‘ngt} for each t € R, . Note that since S,, > S, the

number of arrivals would be higher for renewal process N; with truncated random variables. That
is, N} < N;, and hence m; < 17; from the monotonicity of expectation. Further, due to truncation of
inter arrival time, next renewal happens within M units of time, that is S N1 SE+H M. From the
monotonicity of expectation and Wald’s Lemma for renewal processes in Proposmon [1.7, we get
(14 m¢)upm < t + M. Dividing both sides by tuy; and the fact that m; < 17, for all times t € R,
we obtain limsup,_, m;/t <limsup, ,  m;/t < 1/pp. The result follows from recognizing that
limpg o0 pipt = pe

O

Corollary 1.9. If a delayed renewal process has finite inter renewal durations, then im;_,oo mp(t)/t =1/ uF.

Example 1.10 (Markov chain). Consider a positive recurrent discrete time Markov chain X : (3 —
XN, Let the initial state be Xy = x € X and Tj (0) =0 for y # x € X, then we can inductively define
the kth recurrent time to state y as a stopping time 7, (k) £ inf {n >f(k=1): Xy = y} . Since any
discrete time Markov chain satisfies the strong Markov property, it follows that TyJr 0 — ]N]N form

a delayed renewal process, where the first renewal distribution is Py {T+( )= } = fx and the

common distribution of the inter renewal duration is P, {Ty (1) = } = fyy for k € N. We denote

the associated counting process by Ny, : O — ZI, where N, (n) denotes the number of visits to state
y up to time n, and is defined as

keZNﬂ{T, (<n} = Zl{xk =y}
2

From the strong law for delayed renewal sequence 7, with finite mean inter renewal time 1y,

]E]/Ty+ (1) (which is also the mean recurrence time to state y), it follows that

Py{lim Ny () :1} =1

nelN n I/lyy

From the elementary renewal theorem for delayed renewal sequence T, it follows that

1
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1.3 Central limit theorem for renewal processes

Theorem 1.11. If u £ EX; and 0% £ Var(Xy), then Ny — N (£, %) for large t in distribution. Specifically,
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Proof. Take u = ﬁ +yo # We shall treat u as an integer and proceed, the proof for general u is an

exercise. Recall that {N; < u} = {S,, > t}. By equating probability measures on both sides, we get

o Su—up _t—up _ ) Su—up _ yc7>_1/2
P{Nt<u}P{ o > a\/ﬁ}P{ it > y<1+m .

Sy—up

By central limit theorem,

converges to a normal random variable with zero mean and unit vari-

o/u
-1/2
ance as t grows. We also observe that lim; .. —y (1 + %) = —y. These results combine with the
symmetry of normal random variable to give us the result. O
2 Patterns

Let X : Q — XN be an i.i.d. sequence with common probability mass function p € M (X). We denote the
A

natural filtration of process X by Fo = (F,, : n € IN) where J, £ 0(Xq,...,Xy) for all n € N. Consider a
pattern x = (x1,...,x,) € X™, take S} = 0, and inductively define kth hitting times of the pattern x as

S;(C éiI‘lf{]’l > S;((71 2 Xn =Xm, X1 = X1, X1 = xl} .

It is easy to check that Sf is adapted to F, and we will verify that i is almost surely finite for all k € N
given p is positive. It follows that S* is a sequence of stopping times adapted to F,. Since X is i.i.d. , it

follows that 5 : O — RY is a delayed renewal sequence with inter renewal durations T} £ S§ — SF |
being i.i.d. for k > 2 and independent of T7}.

2.1 Hitting time to pattern (1)

First we consider the simplest example when the alphabet X = {0,1}, with the common mean EX; = p,
and the pattern x = (1). One way to solve this problem is to consider S} as a random variable and find
its distribution. We can write

P {5% = k} = 1p.

We observe that Si is a geometric random variable of the time to first success, with its mean as the
reciprocal of i.i.d. success probability p. An alternative way to solve this is via renewal function ap-

proach. Recall that {S} =1} = {X; =1} and S${1x, o} = (1+ S,b]l{xlzo} in distribution where '] is
independent of X; and distributed identically to S}. The result follows from writing

ES} =ESilig. ) +ESilrg ) = PE(1+S]) +p=1+ pES].

2.2 Hitting time to pattern (0,1)

For the alphabet X = {0,1} with common mean EX; = p, we consider the two length pattern x =
(0,1), then S{ =inf{n € N: X, =1,X,,_1 =0}. We can again model this hitting time as a random
variable, however directly finding the distribution of S* is slightly more complicated. We next attempt
the renewal function approach. We take S’ to be an independent replica of S{ is independent of X;, and
the following equality holds in distribution S{1;x, 1y = (1 + s’ Jf)]l{ x;=1}- In addition, the following
equality holds in distribution ${1x,—o,x,—0} = (1 + &’ D1 {X,=0,x,—0}- Hence, we can write

ES] =ES{1ix,—0) + ESTL{x,=1) = ES{1{x,=1x,=0) + EST1{x,=0x,=0) + PE(1 + 57).
We recognize that the second term on the right hand side can be written as
EST11x,-0,x,—0y = PE(1 + 57)11x,—0} = P* + PES{L{x,—0y = P* + PES{ — ppE(1 + 5}).
Combining the above two results, we can write
ES} =2pp + p2 + PEST + p*E(1 + 8%) =1+ (p + p*)ES7.

It follows that ES] =

3=



2.3 Hitting time to pattern x

For an i.i.d. sequence X : Q) — XN, a general approach is to model X" = (X,;, X, 1, Xy_m11) € X™ as
an m-dimensional time homogeneous irreducible positive recurrent Markov chain. We define Y £ X",
a discrete time process Y : () — YN guch that Y, £ X}, and kth hitting time to state x € Y as

SiEinf{n>S; Y, =x}.

We are interested in the mean of first hitting time S to state x € Y of the joint process X™ : QO — YN. It
follows that the successive times S* : ) — INN for process X" to hit a pattern x € Y is a delayed renewal
process in general. Defining the on times when X" hits x, it follows from the strong law for renewal
processes that the average number of visits to state x is the reciprocal of mean inter renewal duration.
That is, defining Ty e Si — Si_, forall k € N, we have

m
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Definition 2.1. For each pattern x € Y, we define sub-patterns w* = (wy, ..., w;) € X* for k € [m]. We say
that w* is a sub-pattern of x if wk = (xj,-+,Xjrk—1) foreach j € [m — k] and (wy, ..., wk) = (Xp—k1,- -+, Xm)-

Remark 1. We observe that hitting time to a pattern x is also a hitting time to sub-pattern w*. Therefore,

first hitting time to pattern x is ]ES;"k +E_«S7. If x has no sub-patterns, i.e. the initial part of x is not one
of the final parts, i.e. (x1,...,xx) # (Xp—k+1,--.,Xm) for any k € [m], then we observe that S* is a renewal

1
nce and EST =
sequence and [ES] = T

Example 2.2. Consider patterns (1) and (01) for i.id. Bernoulli sequence X : Q — {0,1} with

common mean EX; = p. Clearly, (1) has no sub-pattern and hence ES{ = % Similarly, (01) has no
1

sub-pattern and hence ES! = 5

We can generalize this to arbitrary number of sub- Eatterns of x. If there exists a non empty I C [m]
such that for each k € I there is an initial sub-pattern x* such that (x¥) = (x_.1) is a final sub-pattern
of x, then the mean hitting time to pattern x is equal to the telescoplc sum of mean hitting time to

sub-patterns That is, denoting I £ {i1,...,iy}, we can write
4 i1
ES{=) E;Sf .
i=1
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The mean time duration between two successive hits to x'+! is ]ETQ‘] = . This is the same mean

time from x'/ to x/i+1. Therefore,
k
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Example 2.3. Consider pattern (101) and (1011) for i.i.d. Bernoulli sequence X : QO — {0,1}™ with
common mean EX; = p. Pattern (101) has sub-patterns (1) that appears at the end of (101). There-

fore,
Es{® —Es! +Esi =14 1
poopp

Pattern (1011) has a sub-pattern (1) that appears at the end of (1011). Thus,

1
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