
Lecture-09: Limit Theorems

1 Growth of renewal counting processes

Consider a renewal sequence S : Ω → RN
+ with i.i.d. inter renewal time sequence X : Ω → RN

+ such that
Sn ≜ ∑n

i=1 Xi for each n ∈ N. The associated renewal counting process N : Ω → Z
R+
+ is defined as Nt ≜

∑n∈N1{Sn⩽t} and renewal function m ∈ R
R+
+ is defined as mt ≜ENt for all t ∈ R+. Let F• ≜ (Fn : n ∈ N)

be the natural filtration for process X, such that Fn ≜ σ(X1, . . . , Xn) for each n ∈ N.

Lemma 1.1. If X1 has finite mean, then N∞ ≜ limt→∞ Nt is almost surely infinite.

Proof. Since E[Xn] < ∞ and Xn ⩾ 0, it follows that P{Xn = ∞} = 0. Further, we observe that

P{N∞ < ∞} = P
( ⋃

n∈N

{N∞ < n}
)
= P

( ⋃
n∈N

{Sn = ∞}
)
= P

( ⋃
n∈N

{Xn = ∞}
)
⩽ ∑

n∈N

P{Xn = ∞} = 0.

Corollary 1.2. If the first renewal instant and subsequent inter renewal times for a delayed renewal processes
ND have finite means, then P

{
limt→∞ ND

t = ∞
}
= 1.

Proof. For each n ∈ N, the inter renewal time Xn is positive and has finite mean, and hence is finite
almost surely. Therefore, P{N∞ < ∞}⩽ ∑n∈N P{Xn = ∞} = 0.

1.1 Growth of counting process

We observed that the number of renewals Nt increases to infinity with the length of the duration t. We
will show that the growth of Nt is asymptotically linear with time t, and we will find this coefficient of
linear growth of Nt with time t.

Theorem 1.3 (Strong law for renewal process). limt→∞ Nt/t = 1/EX1 almost surely.

Proof. We first consider the case when EX1 =∞. It follows that α≜ P{X1 < ∞}< 1 and hence P{N∞ = n}=
αn(1 − α) for all n ∈ Z+. It follows that ∪n∈Z+ {N∞ = n} = ∪n∈Z+ {N∞ ⩽ n} is an almost sure event,
and hence limt→∞ Nt/t = 0 almost surely.

Next, we assume that 0 ⩽ EX1 < ∞. For this case, limt→∞ Nt = ∞ almost surely from Lemma 1.1.
We note that SNt ⩽ t < SNt+1, and dividing by Nt, we get

∑
n∈N

Sn

n
1{Nt=n} =

SNt

Nt
⩽

t
Nt

<
SNt+1

Nt
= ∑

n∈N

Sn+1

n
1{Nt=n}.

Since limt→∞ Nt = ∞ almost surely, we have limt→∞
SNt
Nt

= limn→∞
Sn
n and limt→∞

SNt+1
Nt

= limn→∞
Sn+1

n
almost surely. The result follows from L1 strong law of large numbers.

Corollary 1.4. For a delayed renewal process with finite EX2, we have limt→∞ ND
t /t = 1/EX2.

Proof. From L1 strong law of large numbers, we observe that limn∈N Sn/n =EX2, and the result follows.
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Figure 1: Time of last renewal

Example 1.5. Suppose, you are in a casino with infinitely many games. We assume that X : Ω →
[0,1]N is an i.i.d. uniform sequence where Xi is the random probability of win in the game i ∈ N.
One can continue to play a game or switch to another one. We are interested in a strategy that
maximizes the long-run proportion of wins. Let N(n) denote the number of losses in n plays.
Then the fraction of wins PW(n) is given by PW(n) = n−N(n)

n . We pick a strategy where any game is
selected to play, and continue to be played till the first loss. We show that limn→∞ PW(n) = 1 for this
proposed strategy. Let Ti be the number of times a game i is played. We observe that the conditional
probability mass function for the number of plays for each game i is geometrically distributed as

E[1{Ti=k} | σ(Xi)] = Xk−1
i (1 − Xi), k ∈ N.

Hence, it follows that Ti are i.i.d. random variables with mean ETi = E[E[Ti | Xi]] = E
[

1
1−Xi

]
= ∞.

It follows that each loss is a renewal event, and from the strong law of renewal process, we obtain

lim
n→∞

N(n)
n

=
1

E[Time till first loss]
=

1
ETi

= 0.

1.2 Growth of renewal function

Basic renewal theorem implies Nt/t converges to 1/EX1 almost surely. We are next interested in con-
vergence of the ratio mt/t. Note that this is not obvious, since almost sure convergence doesn’t imply
convergence in mean. To illustrate this, we have the following example.

Example 1.6. Consider a Bernoulli random sequence X : Ω →{0,1}N with probability P{Xn = 1}=
1
n , and another random sequence Y : Ω → ZN

+ defined as Yn ≜ nXn for n ∈ N. Then, P{Yn = 0} =

1 − 1
n . That is Yn → 0 a.s. However, E[Yn] = 1 for all n ∈ N. So E[Yn]→ 1.

Even though, basic renewal theorem does NOT imply it, we show that mt/t converging to 1/EX1.

Proposition 1.7 (Wald’s Lemma for renewal process). If EX1 ∈ (0,∞), then Nt + 1 is a stopping time
adapted to F•, and E∑Nt+1

i=1 Xi = (1 + mt)EX1.

Proof. Recall that Nt is almost surely finite if EX1 > 0. We fix n ∈ N, and observe that

{Nt + 1 = n} = {Sn−1 ⩽ t < Sn} =
{

n−1

∑
i=1

Xi ⩽ t <
n−1

∑
i=1

Xi + Xn

}
∈ σ(X1, . . . , Xn) = Fn.

Thus Nt + 1 is a stopping time adapted to F•, and the result follows from Wald’s Lemma.
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Theorem 1.8 (Elementary renewal theorem). If EX1 < ∞, then limt→∞ mt/t = 1/EX1.

Proof. By the assumption, we have mean µ ≜ EX1 < ∞.
(a) Taking expectations on both sides of SNt+1 > t and using Wald’s Lemma for renewal processes in

Proposition 1.7, we have µ(mt + 1) > t. Dividing both sides by µt and taking liminf on both sides,
we get liminft→∞ mt/t ⩾ 1/µ.

(b) We employ a truncated random variable argument to show the reverse inequality. We define trun-
cated inter renewal times X̄ : Ω → [0, M]N defined as X̄n ≜ Xn ∧ M for each n ∈N, and with common
mean denoted by µM ≜ EX1 ∧ M. Since X is i.i.d. , so is the truncated sequence X̄, and hence we
can define the corresponding renewal sequence S̄ : Ω → RN

+ as S̄n ≜ ∑n
i=1 X̄i for each n ∈ N, and the

counting process N̄ : Ω → ZN
+ as N̄t ≜ ∑n∈N1{S̄n⩽t} for each t ∈ R+. Note that since Sn ⩾ S̄n, the

number of arrivals would be higher for renewal process N̄t with truncated random variables. That
is, Nt ⩽ N̄t, and hence mt ⩽ m̄t from the monotonicity of expectation. Further, due to truncation of
inter arrival time, next renewal happens within M units of time, that is S̄N̄t+1 ⩽ t + M. From the
monotonicity of expectation and Wald’s Lemma for renewal processes in Proposition 1.7, we get
(1 + m̄t)µM ⩽ t + M. Dividing both sides by tµM and the fact that mt ⩽ m̄t for all times t ∈ R+,
we obtain limsupt→∞ mt/t ⩽ limsupt→∞ m̄t/t ⩽ 1/µM. The result follows from recognizing that
limM→∞ µM = µ.

Corollary 1.9. If a delayed renewal process has finite inter renewal durations, then limt→∞ mD(t)/t = 1/µF.

Example 1.10 (Markov chain). Consider a positive recurrent discrete time Markov chain X : Ω →
XN. Let the initial state be X0 = x ∈ X and τ+

y (0) = 0 for y ̸= x ∈ X, then we can inductively define

the kth recurrent time to state y as a stopping time τ+
y (k)≜ inf

{
n > τ+

y (k − 1) : Xn = y
}

. Since any

discrete time Markov chain satisfies the strong Markov property, it follows that τ+
y : Ω → NN form

a delayed renewal process, where the first renewal distribution is Px

{
τ+

y (1) = k
}
= f (k)xy and the

common distribution of the inter renewal duration is Py

{
τ+

y (1) = k
}
= f (k)yy for k ∈ N. We denote

the associated counting process by Ny : Ω → ZN
+ , where Ny(n) denotes the number of visits to state

y up to time n, and is defined as

Ny(n)≜ ∑
k∈N

1{τ+y (k)⩽n} =
n

∑
k=1

1{Xk=y}.

From the strong law for delayed renewal sequence τ+
y with finite mean inter renewal time µyy ≜

Eyτ+
y (1) (which is also the mean recurrence time to state y), it follows that

Py

{
lim
n∈N

Ny(n)
n

=
1

µyy

}
= 1.

From the elementary renewal theorem for delayed renewal sequence τ+
y , it follows that

lim
n∈N

1
n

n

∑
k=1

p(k)xy = lim
n∈N

1
n

Ex[Ny(n)] =
1

µyy
.

1.3 Central limit theorem for renewal processes

Theorem 1.11. If µ ≜ EX1 and σ2 ≜ Var(X1), then Nt →N ( t
µ ,σ2 t

µ3 ) for large t in distribution. Specifically,

lim
t→∞

P

Nt − t
µ

σ
√

t
µ3

< y

 =
1√
2π

∫ y

−∞
e−

x2
2 dx.
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Proof. Take u = t
µ + yσ

√
t

µ3 . We shall treat u as an integer and proceed, the proof for general u is an

exercise. Recall that {Nt < u} = {Su > t}. By equating probability measures on both sides, we get

P{Nt < u} = P
{

Su − uµ

σ
√

u
>

t − uµ

σ
√

u

}
= P

{
Su − uµ

σ
√

u
> −y

(
1 +

yσ√
tµ

)−1/2
}

.

By central limit theorem, Su−uµ

σ
√

u converges to a normal random variable with zero mean and unit vari-

ance as t grows. We also observe that limt→∞ −y
(

1 + yσ√
tu

)−1/2
= −y. These results combine with the

symmetry of normal random variable to give us the result.

2 Patterns

Let X : Ω →XN be an i.i.d. sequence with common probability mass function p ∈M(X). We denote the
natural filtration of process X by F• ≜ (Fn : n ∈ N) where Fn ≜ σ(X1, . . . , Xn) for all n ∈ N. Consider a
pattern x = (x1, . . . , xm) ∈ Xm, take Sx

0 ≜ 0, and inductively define kth hitting times of the pattern x as

Sx
k ≜ inf

{
n > Sx

k−1 : Xn = xm, Xn−1 = xm−1, . . . , Xn−m+1 = x1
}

.

It is easy to check that Sx
k is adapted to F• and we will verify that Sx

k is almost surely finite for all k ∈ N

given p is positive. It follows that Sx is a sequence of stopping times adapted to F•. Since X is i.i.d. , it
follows that Sx : Ω → RN

+ is a delayed renewal sequence with inter renewal durations Tx
k ≜ Sx

k − Sx
k−1

being i.i.d. for k ⩾ 2 and independent of Tx
1 .

2.1 Hitting time to pattern (1)

First we consider the simplest example when the alphabet X= {0,1}, with the common mean EX1 = p,
and the pattern x = (1). One way to solve this problem is to consider S1

1 as a random variable and find
its distribution. We can write

P
{

S1
1 = k

}
= p̄k−1 p.

We observe that S1
1 is a geometric random variable of the time to first success, with its mean as the

reciprocal of i.i.d. success probability p. An alternative way to solve this is via renewal function ap-
proach. Recall that

{
S1

1 = 1
}
= {X1 = 1} and S1

11{X1=0} = (1 + S′1
1)1{X1=0} in distribution where S′1

1 is
independent of X1 and distributed identically to S1

1. The result follows from writing

ES1
1 = ES1

11{S1
1>1} + ES1

11{S1
1=1} = p̄E(1 + S1

1) + p = 1 + p̄ES1
1.

2.2 Hitting time to pattern (0,1)

For the alphabet X = {0,1} with common mean EX1 = p, we consider the two length pattern x =
(0,1), then Sx

1 = inf{n ∈ N : Xn = 1, Xn−1 = 0}. We can again model this hitting time as a random
variable, however directly finding the distribution of Sx is slightly more complicated. We next attempt
the renewal function approach. We take S′x

1 to be an independent replica of Sx
1 is independent of X1, and

the following equality holds in distribution Sx
11{X1=1} = (1 + S′x

1)1{X1=1}. In addition, the following
equality holds in distribution Sx

11{X2=0,X1=0} = (1 + S′x
1)1{X2=0,X1=0}. Hence, we can write

ESx
1 = ESx

11{X1=0} + ESx
11{X1=1} = ESx

11{X2=1,X1=0} + ESx
11{X2=0,X1=0} + pE(1 + Sx

1).

We recognize that the second term on the right hand side can be written as

ESx
11{X2=0,X1=0} = p̄E(1 + Sx

1)1{X1=0} = p̄2 + p̄ESx
11{X1=0} = p̄2 + p̄ESx

1 − p̄pE(1 + Sx
1).

Combining the above two results, we can write

ESx
1 = 2pp̄ + p̄2 + p̄ESx

1 + p2E(1 + Sx
1) = 1 + ( p̄ + p2)ESx

1 .

It follows that ESx
1 = 1

pp̄ .
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2.3 Hitting time to pattern x

For an i.i.d. sequence X : Ω → XN, a general approach is to model Xm
n = (Xn, Xn−1, Xn−m+1) ∈ Xm as

an m-dimensional time homogeneous irreducible positive recurrent Markov chain. We define Y≜ Xm,
a discrete time process Y : Ω → YN such that Yn ≜ Xm

n , and kth hitting time to state x ∈ Y as

Sx
k ≜ inf

{
n > Sx

k−1 : Yn = x
}

.

We are interested in the mean of first hitting time Sx
1 to state x ∈ Y of the joint process Xm : Ω → YN. It

follows that the successive times Sx : Ω → NN for process Xm to hit a pattern x ∈ Y is a delayed renewal
process in general. Defining the on times when Xm hits x, it follows from the strong law for renewal
processes that the average number of visits to state x is the reciprocal of mean inter renewal duration.
That is, defining Tx

k ≜ Sx
k − Sx

k−1 for all k ∈ N, we have

lim
n→∞

1
N

N

∑
n=1

1{Xm
n =x} = lim

n→∞

1
N

N

∑
n=1

1{Xn=xm ,...,Xn−m+1=x1} =
m

∏
i=1

pxi =
1

ETx
k

.

Definition 2.1. For each pattern x ∈ Y, we define sub-patterns wk ≜ (w1, . . . ,wk) ∈Xk for k ∈ [m]. We say
that wk is a sub-pattern of x if wk = (xj, . . . , xj+k−1) for each j ∈ [m− k] and (w1, . . . ,wk) = (xm−k+1, . . . , xm).

Remark 1. We observe that hitting time to a pattern x is also a hitting time to sub-pattern wk. Therefore,
first hitting time to pattern x is ESwk

1 +Ewk Sx
1 . If x has no sub-patterns, i.e. the initial part of x is not one

of the final parts, i.e. (x1, . . . , xk) ̸= (xm−k+1, . . . , xm) for any k ∈ [m], then we observe that Sx is a renewal
sequence and ESx

1 = 1
∏m

i=1 pxi
.

Example 2.2. Consider patterns (1) and (01) for i.i.d. Bernoulli sequence X : Ω → {0,1}N with
common mean EX1 = p. Clearly, (1) has no sub-pattern and hence ES1

1 =
1
p . Similarly, (01) has no

sub-pattern and hence ES01
1 = 1

p̄p .

We can generalize this to arbitrary number of sub-patterns of x. If there exists a non empty I ⊆ [m]
such that for each k ∈ I there is an initial sub-pattern xk such that (xk) = (xm

m−k+1) is a final sub-pattern
of x, then the mean hitting time to pattern x is equal to the telescopic sum of mean hitting time to
sub-patterns That is, denoting I ≜ {i1, . . . , iℓ}, we can write

ESx
1 =

ℓ

∑
j=1

E
xij S

xij+1

1 .

The mean time duration between two successive hits to xij+1 is ETxij+1

2 = 1

∏
ij+1
r=1 pxr

. This is the same mean

time from xij to xij+1 . Therefore,

ESx
1 =

k

∑
j=1

1

∏
ij+1
r=1 pxr

.

Example 2.3. Consider pattern (101) and (1011) for i.i.d. Bernoulli sequence X : Ω → {0,1}N with
common mean EX1 = p. Pattern (101) has sub-patterns (1) that appears at the end of (101). There-
fore,

ES(101)
1 = ES1

1 + E1S101
1 =

1
p
+

1
p2 p̄

.

Pattern (1011) has a sub-pattern (1) that appears at the end of (1011). Thus,

ES(1011)
1 = ES1

1 + E1S1011
1 =

1
p
+

1
p3 p̄

.
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