
Lecture-10: Regenerative Processes

1 Regenerative processes

Let (Ω,F, P) be a probability space, and S : Ω → RN
+ be a renewal sequence, with the associated inter

renewal sequence X : Ω → RN
+ and the counting process N : Ω → Z

R+
+ . That is, the nth renewal instant

is Sn ≜ ∑n
i=1 Xi for each n ∈ N and the number of renewals is Nt ≜ ∑n∈N1{Sn⩽t} until each time t ∈ R+.

Definition 1.1. Consider a stochastic process Z : Ω → RR+ defined over the same probability space.
The nth segment of the joint process (N, Z) : Ω → (Z+ × R)R+ is defined as the sample path in the nth
inter renewal duration, written ζn ≜ (Xn, (ZSn−1+t : t ∈ [0, Xn)) for each n ∈ N.

Definition 1.2. The process Z is regenerative over the renewal sequence S, if its segments (ζn : n ∈ N)
are i.i.d. . The process Z is delayed regenerative, if S is a delayed renewal sequence and the segments
(ζn : n ∈ N) of the joint process are independent with (ζn : n ⩾ 2) being identically distributed.

Definition 1.3. Let Ft ≜ σ(Nu, Zu,u ⩽ t) be the history of the regenerative process until time t ∈ R+.
The renewal sequence S is the regeneration times for the process Z, and the process Z possesses the
regenerative property of the process (ZSn−1+t : t ⩾ 0) being independent of history FSn−1 and distributed
identically to Z. For delayed regenerating process Z, the process (ZSn−1+t : t ⩾ 0) is independent of
history FSn−1 and is identically distributed for n ⩾ 2.

Remark 1. The definition says that probability law is independent of the past and shift invariant at
renewal times. That is after each renewal instant, the process becomes an independent probabilistic
replica of the process starting from zero for the regenerative process. The process starting at each re-
newal instant is an independent probabilistic replica of the process starting from the first renewal instant
for the delayed regenerative process.
Remark 2. If the regenerative process Z is bounded, then for any Borel measurable function f : R → R,
we have

E[ f (Zt) | FSn−1 ] = E[ f (Zt−Sn−1) | σ(Sn−1)]1{t⩾Sn−1} + f (Zt)1{t<Sn−1}.

Example 1.4 (Markov chains). Consider a discrete time homogeneous, irreducible, aperiodic and
finite state Markov chain X : Ω →XN and a state y ∈X. Then X is positive recurrent and we denote
its invariant distribution by π ∈ M(X). We can inductively define the recurrent times for state y
as τ+

y (0)≜ 0 and τ+
y (k)≜ inf

{
n > τ+

y (k − 1) : Xn = y
}

. For each k ∈ N, kth recurrent time to state
y is adapted to natural filtration of Markov chain X and is almost surely finite since X is positive
recurrent. It follows that τ+

y : Ω → NN is a sequence of stopping times.
We fix k ∈ N, and define the kth excursion time to the state y as Ik ≜ {τ+

y (k − 1) + 1, . . . ,τ+
y (k)}

and the length of this excursion as Ty(k)≜ τ+
y (k)− τ+

y (k − 1). We can write the kth segment for the
Markov chain X as

ζk ≜ (Ty(k), (Xτ+y (k−1)+m : m ∈ [Ty(k)]).

From the strong Markov property of Markov chain X applied to each stopping time τ+
y (k), we ob-

serve that (Xτ+y (k)+n : n ∈ Z+) is independent of the random past Fτ+y (k) and distributed identically
for k ∈ N. It follows that the segments are independent and distributed identically for k ⩾ 2. We
can write the joint distribution for (Ty(k), Xτ+y (k−1)+m) for m < Ty(k),z ̸= y, and k ⩾ 2, as

P
{

m < Ty(k) = r, Xτ+y (k−1)+m = z
}
= Py

{
τ+

y (1) > m, Xm = z
}

Pz

{
τ+

y (1) = r − m
}

.

The equality follows from the strong Markov property and the homogeneity of process X. It follows
that the Markov process X is a delayed regenerative process over delayed renewal sequence τ+

y .
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1.1 Renewal equation

Let Z : Ω →ZR+ be a regenerative process over renewal sequence S : Ω →RN
+ defined on the probability

space (Ω,F, P), and F be the distribution of inter renewal times. The counting process associated with
the renewal sequence S is denoted by N, and we define the history of the joint process N, Z until time t
by Ft. We next compute the marginal distribution of a regenerative process sampled at any time t.

Definition 1.5. For a regenerative process Z and a Borel measurable set A ∈ B(Z), we define the
marginal probability function f ∈ [0,1]R+ and the kernel function K ∈ [0,1]R+ at any time t ∈ R+, as

ft ≜ P{Zt ∈ A} , Kt ≜ P{S1 > t, Zt ∈ A} .

Remark 3. Computing the marginal distribution of Zt is equivalent to computing ft for any measurable
set A ∈ B(Z). We will write the marginal distribution in terms of the inter renewal time distribution F,
and the kernel function K which is typically easy to compute for any regenerative process.

Proposition 1.6 (Renewal equation). The marginal distribution f of regenerative process Z satisfies the fol-
lowing fixed point equation referred to as renewal equation in terms of associated kernel function K and inter
renewal time distribution F,

f = K + F ∗ f . (1)

Proof. We can write the probability of the event {Zt ∈ A} by partitioning it into disjoint events as

P{Zt ∈ A} = P{Zt ∈ A,S1 > t}+ P{Zt ∈ A,S1 ⩽ t} . (2)

By the regeneration property applied at renewal instant S1, we have

E[1{Zt∈A,S1⩽t} | FS1 ] = E[1{Zt−S1
∈A} | σ(S1)]1{S1⩽t} = ft−S11{S1⩽t}. (3)

Taking expectation of (3) and combining with (2), we obtain the result.

Theorem 1.7 (Solution to renewal equation). The renewal equation (1) has a unique solution f = (1+ m) ∗
K, where m = ∑n∈N Fn is the renewal function associated with the inter renewal time distribution F.

Proof. We first verify that f = (1 + m) ∗ K satisfies the renewal equation. This follows from the fact that
F ∗ (1 + m) = m. We next show the uniqueness of this solution, by showing that if there is any other
solution g to the renewal equation, then h ≜ g − (1 + m) ∗ K = 0. We observe that for any solution g to
the renewal equation, we have g = K + F ∗ g, and the difference h = g − (1 + m) ∗ K satisfies h = F ∗ h.
By repeated application of this equation, we obtain that h = Fn ∗ h for all n ∈ N. From the finiteness of
mt, it follows that (Fn)t → 0 as n grows. Hence, limn∈N(Fn ∗ h)t = 0 for each t ∈ R+.

Example 1.8 (Age and excess time processes). Let N : Ω →R
R+
+ be the renewal counting process for

the renewal sequence S : Ω → RN
+ . We define the corresponding age process A : Ω → R

R+
+ and the

excess time process Y : Ω → R
R+
+ at each time t ∈ R+ in the following. The age of last renewal at time t

is defined as At ≜ t− SNt and the excess time for next renewal at time t is defined as Yt ≜ SNt+1 − t. Let
t ∈ [0, Xn), then Sn−1 + t corresponds to a time instant in the nth renewal interval, and we observe
that the sample path of age and excess time in this renewal interval are given by

ASn−1+t = t, YSn−1+t = Xn − t.

We can respectively write the nth segment of age and excess time processes as

ζn ≜ (Xn, (t : t ∈ [0, Xn))), ηn ≜ (Xn, (Xn − t : t ∈ [0, Xn))).

Since inter renewal times are i.i.d. , it follows that ((ζn,ηn) : n∈N) is an i.i.d. sequence, and hence the
age process A and excess times process Y are regenerative. However, we note that the nth segment
of age and excess times are dependent. We can write the respective kernel functions KA,KY for
age and excess time processes, in terms of the complementary distribution function F̄ of the inter
renewal times, as

KA
t ≜ P{At ⩾ x,S1 > t} = 1{t⩾x} F̄t, KY

t ≜ P{Yt ⩾ x,S1 > t} = F̄t+x.
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Since the age and excess time processes are regenerative, we can apply Theorem 1.7 to compute the
marginal distributions of these processes sampled at any time t ∈ R+, as

P{At ⩾ x} = 1{t⩾x} F̄t +
∫ t

0
dmy1{t−y⩾x} F̄t−y, P{Yt ⩾ x} = F̄t+x +

∫ t

0
dmy F̄t+x−y.

1.2 Delayed renewal equation

Let Z : Ω → ZR+ be a delayed regenerative process over delayed renewal sequence S : Ω → RN
+ defined

on the probability space (Ω,F, P). We assume that inter-renewal time sequence X : Ω → RN
+ is inde-

pendent with distributions G ≜ FX1 and F ≜ FXn for all n ⩾ 2. The counting process associated with
the delayed renewal sequence S is denoted by ND, and we define the history of the joint process ND, Z
until time t by Ft.

Definition 1.9. We denote the distribution of nth renewal instant Sn by G ∗ Fn−1 where Fn is n-fold
convolution of F, and the delayed renewal function by mD = ∑n∈N G ∗ Fn−1. The nth segment of the
joint process (ND, Z) is given by ζn ≜ (Xn, (Zt, t ∈ [Sn−1,Sn) : n ∈ N).

Remark 4. For the delayed regenerative process, the segments ζ are independent and (ζn : n ⩾ 2) is i.i.d. .
In this case, (ZSn+t : t ∈ [0, Xn+1)) is independent of FSn and distributed identically to (ZS1+t, t ∈ [0, X2))
for all n ∈ N.

Definition 1.10. For a delayed regenerative process Z and a Borel measurable set A ∈ B(Z), we define
the marginal probability function f ∈ [0,1]R+ and kernel functions K1,K2 ∈ [0,1]R+ at any time t ∈ R+,

ft ≜ P{Zt ∈ A} , K1
t ≜ P{S1 > t, Zt ∈ A} , K2

t ≜ P
{

ZS1+t ∈ A, t ∈ [0, X2)
}

.

Theorem 1.11. The marginal distribution f of delayed regenerative process Z can be written in terms of associ-
ated kernel functions K1,K2 and delayed renewal function mD, as

f = K1 + K2 ∗ mD. (4)

Proof. Fix a Borel measurable set A ∈ B(R). We can write the probability ft = P{Zt ∈ A} as the sum of
probability of disjoint partitions ({Zt ∈ A, Nt = n} : n ∈ N) of this event as

ft = P{Zt ∈ A,S1 > t}+ ∑
n∈N

E[1{Zt∈A}1[Sn ,Sn+1)
(t)].

Using the tower property of conditional expectation and the regenerative property of Z, we can write

E[1{Zt∈A}1[Sn ,Sn+1)
(t)] = E[1{Sn⩽t}E[1{ZSn+t−Sn∈A}1[0,Xn+1)

(t − Sn) | FSn ]] = E[1{Sn⩽t}K2(t − Sn)].

The result follows from aggregating the results for all n ∈ N, the fact that mD = ∑n∈N FSn , and exchange
of summation and derivative using monotone convergence theorem.

Example 1.12 (Age and excess time processes). Consider age and excess time processes associated
with a delayed renewal process S : Ω → RN

+ , with distribution G for first inter renewal time and
distribution F for subsequent inter renewal times. The nth segment corresponding to the age and
excess time processes are given by

ζn ≜ (Xn, (t : t ∈ [0, Xn))), ηn ≜ (Xn, (Xn − t : t ∈ [0, Xn))).

Since S is a delayed renewal sequence, segments are independent and identically distributed for
n ⩾ 2. It follows that age and excess times are delayed regenerative processes. We fix a measurable
set B ≜ [x,∞) and compute the kernel functions K1,K2 for the delayed regenerative process A, as

K1
t ≜ P{At ⩾ x,S1 > t} = 1{t⩾x}Ḡt, K2

t ≜ P
{

AS1+t ⩾ x,S1 + t ∈ [0, X2)
}
= 1{t⩾x} F̄t.

Therefore, we can write the distribution of last renewal time for the delayed renewal process as

P{SNt ⩽ x} = P{At ⩾ t − x} = 1{x⩾0}Ḡt +
∫ t∧x

0
dmD

y F̄t−y.
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1.3 Key Lemma

Theorem 1.13 (Key Lemma). Consider a renewal sequence S with i.i.d. inter renewal times X having common
distribution function F with positive mean, associated counting process N, and the renewal function m. Then, for
all 0 ⩽ s ⩽ t,

P{SNt ⩽ s} = F̄t +
∫ s

0
dmy F̄t−y.

Proof. We can see that the event {SNt ⩽ s} that the time of last renewal prior to t is smaller than another
time s can be partitioned into disjoint events corresponding to number of renewals until time t. Each of
these disjoint events is equivalent to the occurrence of nth renewal before time s and the occurrence of
(n + 1)th renewal past time t. Since Nt is finite almost surely for EX1 > 0, we have the following almost
sure equality

{SNt ⩽ s} =
⋃

n∈Z+

{SNt ⩽ s, Nt = n} =
⋃

n∈Z+

{Sn ⩽ s,Sn+1 > t} .

We recognize that S0 = 0,S1 = X1, and Sn+1 = Sn + Xn+1. From linearity of expectation, monotone con-
vergence theorem to exchange expectation and infinite summation of nonnegative random variables,
and tower property of conditional expectation, we can write

P{SNt ⩽ s} = P{X1 > t}+ ∑
n∈N

E[1{Sn⩽s}E[1{Xn+1>t−Sn}|σ(Sn)]].

We recall that X is i.i.d. with distribution F and the distribution of nth renewal instant Sn is the n-fold
convolution of F denoted by Fn. Taking expectation of F̄(t − Sn)1{Sn⩽s}, we get

P{SNt ⩽ s} = F̄(t) + ∑
n∈N

∫ s

y=0
F̄(t − y)dFn(y).

Using monotone convergence theorem to interchange integral, summation, and derivatives, and notic-
ing that m(y) = ∑n∈N Fn(y), the result follows.

Remark 5. Key lemma tells us that distribution of SNt has probability mass at 0 and density between
(0, t], that is,

P{SNt = 0} = F̄(t), dFSNt
(y) = F̄(t − y)dm(y), 0 < y ⩽ t.

Probability of nth renewal taking place in the duration [y,y + dy] is given by P{Sn ∈ (y,y + dy)} =
dFn(y). Therefore, probability of some renewal taking place in the infinitesimal neighborhood of y, is

P
(
∪n∈N {Sn ∈ (y,y + dy)}

)
= ∑

n∈N

dFn(y) = dm(y).

Probability of no renewal in the interval (y + dy, t], given the nth renewal occurred at time y, is given
by P{Xn+1 > t − y} = F̄(t − y). It follows that

P{renewal occurs in (y,y + dy) and next arrival after t − y} = dFSNt
(y).

That is, the density of last renewal time SNt has the interpretation of renewal taking place in the in-
finitesimal neighborhood of y, and no renewal in the duration [y, t].

Example 1.14 (Poisson process). Consider a renewal sequence S with i.i.d. inter renewal time sequence
X distributed exponentially with rate λ > 0. Then, the distribution of last renewal is given by

P{SNt ⩽ x} = e−λt +
∫ x

0
λe−λ(t−y)dy = e−λ(t−x), 0 ⩽ x ⩽ t.

Exercise 1.15. Find the age and the excess time distribution for a Poisson process.

Corollary 1.16 (Delayed Key Lemma). Consider a delayed renewal process S, with distribution G for first
inter renewal time, distribution F for subsequent inter renewal times, associated counting process ND, and the
renewal function mD. Then, for all 0 ⩽ s ⩽ t,

P
{

SND
t
⩽ s

}
= Ḡt +

∫ s

0
F̄t−ydmD

y .
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