Lecture-11: Key Renewal Theorem

1 Blackwell Theorem

Lemma 1.1. Consider a renewal sequence S with inter renewal time distribution F and renewal function m. If
inf{x € Ry : F(x) =1} = oo, then sup {m; —m;_p, : t € Ry} < oo for any b > 0.

Proof. Recall that m =), . Fy and hence m « F = m — F. This implies that m % (1 — F) = F. Since the
function 1 — F is monotonically non increasing, inf, (s F(s) = F(b). Therefore,

1> F(t) = /Ot dmsF(t —s) > /tibdmsﬁ(t —§) > (ms — my_y)E(b).

Since F(b) < 1 for any b € R, we obtain the result. O

Theorem 1.2 (Blackwell’s Theorem). Consider a renewal sequence S with renewal function m, and ii.d. inter
renewal time sequence X with common distribution F such that inf {x € Ry : F(x) =1} = o0.

(a) If the renewal sequence is aperiodic, then lim;_yoo My, — my = a/EXy forall a > 0.

(D) If the renewal sequence has period d, then limy o 1,4 1)q — Mpg = d/EX;.

Proof. We will show later that the following limit exists for aperiodic renewal sequences

g(a) = Jim [myyq — my] 1)

(a) However, we show that if this limit does exist, it is equal to a/EX; as a consequence of elementary
renewal theorem. To this end, note that m;, ,,p — my = my 41 p — Mppq + Mmpy, — m;. Taking limits on
both sides of the above equation, we conclude that g(a + b) = g(a) + g(b). The only nondecreasing

solution of sucha g € ]R]Ifr is g(a) = ca, for alla € Ry and some positive constant c. To show ¢ =1/EXj,
we define a sequence x € RY in terms of renewal function m; for each n € N, as

2
Xp =My — My_q.

Note that Y x; = m,, and lim,,c x, = g(1) = c. Further recall that, if a sequence x € RN converges,
then the running average sequence a € RN defined asa, = 1 Y | x; converges to the same limit. Hence,
we have the Cesaro mean converging to lim, ¢ % Y xi =lim,en % = ¢. Therefore, we can conclude
¢ = 1/EX; by elementary renewal theorem.
(b) If the renewal sequence is periodic with period d, the limit in (1) doesn’t exist, as shown in the following
example. However, the theorem is true for lattice again by elementary renewal theorem. We can define
Xp 2 My — M(y_1)d and observe that )\ ; x; = m,,; and the Cesaro mean %2?:1 x; converges to d/IEX;
by elementary renewal theorem.
O

Example 1.3. Consider a renewal sequence with P{X; = 1} =1, that s, there is a renewal at every positive
integer time instant with unit probability. We observe that it is a periodic renewal sequence with period
d=1.Now, fora=0.25and t, =n+ (—1)"a, we see that m;, = Ny, =n — 1y, 44}, and my, 1, = n. It follows
that my, 4, —my, = ]l{n odd} s and hence lim;, e 1114, +, — My, does not exist. It follows that lim;_,co 111444 — 11t
does not exist.



Exercise 1.4. Let m be the renewal function associated with an aperiodic renewal sequence. Show
that the following limit exists

g(a) = lim [myy o — m].

Remark 1. For a renewal sequence with positive periodicity d > 0, there can be no more than one renewal at
each time instant nd. In this case,

ligrl P{renewal at nd} = d/EXj.
n—oo

Corollary 1.5 (Delayed Blackwell’s Theorem). Consider an aperiodic and recurrent delayed renewal process S

with independent inter renewal times X with first inter renewal time distribution G and common inter renewal time

distribution F for (X, : n > 2) such that inf{x € Ry : F(x) = 1} = co. We denote the associated renewal function
D

as m-.

(a) If the renewal sequence is aperiodic, then lim;_,omP,, — mP = a/EX, forall a > 0.

(b) If renewal sequence has period d, then limy, m(DnH)d —mbP =d/EX,.

2 Key Renewal Theorem

Theorem 2.1 (Key renewal theorem). Consider a recurrent renewal process S with ii.d. inter renewal time se-
quence X having common distribution F and finite mean, associated renewal function m, and a directly Riemann
integrable function z € D.

(a) If renewal sequence is aperiodic, then lim;_ fot Zi—xdmy, = IELxl fooo zdt.
(b) If renewal sequence has period d, then limy, fO"d Zpd—xdMy = ]Eixl Ykez, Zkd-
Proposition 2.2 (Equivalence). Blackwell’s theorem and key renewal theorem are equivalent.

Proof. Let’s assume key renewal theorem is true. We fix a > 0 and select a simple function z € ]R]E+ as an
indicator for the interval [0,a], i.e. zt = 11 ,(t) for any t € Ry, and z € D from Proposition
(a) Let S be an aperiodic renewal sequence, then from Key Renewal Theorem, we have lim;_,co[m; —
mt,a] = lZ/]EXl.
(b) Let the period of renewal sequence S be d, then from Key Renewal Theorem, we have for limy, e [, 5 —
my,g] = d/EX; for a < d. In this case, we have m,;_, = My _1)a and the result follows.
For the converse, we assume that Blackwell’s theorem holds true.
(a) We defer the formal proof of converse for an aperiodic renewal sequence to a later stage. We observe
that, from Blackwell theorem, it follows
dm(t) (a)

. T |
MR T AR g (e ) S /R

where in (a) we can exchange the order of limits under certain regularity conditions.

(b) When renewal sequence has period d, then dm, is an impulse at multiple of d, and fond Zpd—xdimy =
Yk=0Z(n—k)d (M(k11)a — Mka)- The result follows from exchange of limits for dRI z € D.
O

Remark 2. Key renewal theorem is very useful in computing the limiting value of some function g, where
gt is a probability or expectation of an event at an arbitrary time ¢, for a regenerative process. This value is
computed by conditioning on the time of last regeneration prior to time ¢.

Corollary 2.3 (Delayed key renewal theorem). Consider a recurrent delayed renewal process S with independent
inter renewal times X with first inter renewal time distribution G and common inter renewal time distribution F for
(Xy : 1> 2). Let the renewal function be denoted by mP, z € D be a directly Riemann integrable function.

(a) If delayed renewal sequence is aperiodic, then lim;_,co fot Zp_ydmy = JELXZ fooo zidt.

. . d
(b) If delayed renewal sequence has period d, then limy, o fon Zpd— Ay = IELXZ YkeZ., Zkd-

Remark 3. Any kernel function t — K; £ P {z; € A, X1 >t} < F(t), and hence K € D from Propositionb).



A Directly Riemann Integrable

For each scalar 1 > 0 and natural number 1 € IN, we can define intervals I,,(h) £ [(n — 1)h,nh), such that the
collection (I,(h),n € IN) partitions the positive real-line R . Consider a function z € Ry — R bounded
over finite intervals, then we can denote the infimum and supremum of z in the interval I, as

2 2inf{z :t € I,(h)} Zt Lsup{z :tel,(h)}.

We can define functions z,Z;, : Ry — Ry such that zI! & ZneINZZ]lI,,(h) (t) and z £ Zne]NZZ]lI,,(h) (t) for all
t € R4. From the definition, we have z;, <z <z, for all i > 0. The infinite sums of infimum and supremums
over all the intervals (I, (h),n € IN) are denoted by

h h =h =h
zidt =h zr, / zidt=h zZr.
/tE]R+ = Z = teR4 ! Z "

nelN nelN

Remark 4. Since zj, < z < zj,, we observe that ft R, ;’fdt < ft R, Zi’dt. We observe that z;, and zj, are nonde-

creasing and nonincreasing in & respectively. As as h | 0, if both left and right limits exist and are equal,
then the integral value |, R, z¢dt is equal to the limit.

Definition A.1 (directly Riemann integrable (d.R.i.)). A function z: R — R is directly Riemann integrable
and denoted by z € D if the partial sums obtained by summing the infimum and supremum of k, taken over
intervals obtained by partitioning the positive axis, are finite and both converge to the same limit, for all
finite positive interval lengths. That is, ¥_,,c 1z} < o0 and limy,) |, R, zZidt = limy, g f, R, zl'dt. The limit is
denoted by
zidt =1lim Y hzh =1lim Y hzl.

/te]R+ t hl0 ng\l " hl0 ng\l -
For a real function z € RR®+, we can define the positive and negative parts by z*,z~ € IRIE+ such that
zf £ 2,V0,and z; £ _(z A0) forallt € R,. If both z+,z~ € D, then z € ID and the limit is

/ ztdté/ zjdt—/ z; dt.
R, Ry Ry

Remark 5. We compare the definitions of directly Riemann integrable and Riemann integrable functions.
For a finite positive M, a function z € RI*M! is Riemann integrable if limy, 10 fOM zZldt = limy, g h fOM Zldt. In
this case, the limit is the value of the integral fOM zidt. For a function z € RR+, [ (R, zidt = limp_ye0 fOM zidt,
if the limit exists. For many functions, this limit may not exist.

Remark 6. A directly Riemann integrable function over Ry is also Riemann integrable, but the converse
need not be true.

Lemma A.2. We define a map z € ]R]EJr as 2 = Y e L, (t) for all t € Ry, where Ey = |0 — 515, 1+ 51 }

T’ 2nZ
for each n € IN. Then, z is Riemann integrable, but not directly Riemann integrable.

Proof. We will show that z is Riemann integrable, however |, cRr, Ztdt is always infinite.

(a) We observe that [ 1, (t)dt = 1/n? and hence ¥,,cn Jr, 1E,(H)dt = Luen 1/n? < co. Interchang-
ing infinite sum and integral for positive terms by monotone convergence theorem, we obtain
ft R, z¢dt < 0o, and hence z is Riemann integrable.

(b) It suffices to show that z,,(h) =1 for all m € IN. Since the collection (I,(h) : n € N) partitions the

entire R, for each n € IN there exists an m € IN such that E, N I, (h) # @, and the result follows.
O



Exercise A.3 (Necessary conditions for d.R.i.). If a function z : Ry — R is directly Riemann inte-
grable, then show that z is bounded and continuous a.e.

Exercise A.4 (Sufficient conditions for d.R.i.). Show that if any of the following conditions hold for
a function z : Ry — R, then it is directly Riemann integrable.

(a) z is monotone nonincreasing, and Lebesgue integrable.

(b) zis bounded above by a directly Riemann integrable function.
(c) z has bounded support.

(d) zis continuous, and has finite support.

(e) zis continuous, bounded, and |, teR E’Zdt is bounded for some i > 0.
+

(f) ft€R+ Zl'dt is bounded for some f > 0.

Exercise A.5. For any directly Riemann integrable function z : R; — R show that lim; ye0 2 =
lim;; 00 Eﬁ.

Proposition A.6 (Tail Property). If z: R — R is directly Riemann integrable and has bounded integral value,
then lim; 00 z¢ = 0.

Proof. If z € D, then hY_,,cyZ < oo for all i > 0. This implies that the infinite positive sum ¥, Z!" is finite,
and hence limnﬁwfﬁ = lim; 00zt = 0. O

Corollary A.7. Any distribution F : Ry — [0,1] with finite mean y, the complementary distribution function F is
d.R.i.

Proof. Since F is monotonically nonincreasing and its Lebesgue integration is f]R+ F(t)dt = u, the result
follows from Proposition[A.4(a). O
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