
Lecture-11: Key Renewal Theorem

1 Blackwell Theorem

Lemma 1.1. Consider a renewal sequence S with inter renewal time distribution F and renewal function m. If
inf{x ∈ R+ : F(x) = 1} = ∞, then sup{mt − mt−b : t ∈ R+} < ∞ for any b > 0.

Proof. Recall that m = ∑n∈N Fn and hence m ∗ F = m − F. This implies that m ∗ (1 − F) = F. Since the
function 1 − F is monotonically non increasing, infs∈[0,b] F̄(s) = F̄(b). Therefore,

1 ⩾ F(t) =
∫ t

0
dms F̄(t − s)⩾

∫ t

t−b
dms F̄(t − s)⩾ (mt − mt−b)F̄(b).

Since F(b) < 1 for any b ∈ R+, we obtain the result.

Theorem 1.2 (Blackwell’s Theorem). Consider a renewal sequence S with renewal function m, and i.i.d. inter
renewal time sequence X with common distribution F such that inf{x ∈ R+ : F(x) = 1} = ∞.
(a) If the renewal sequence is aperiodic, then limt→∞ mt+a − mt = a/EX1 for all a ⩾ 0.
(b) If the renewal sequence has period d, then limn→∞ m(n+1)d − mnd = d/EX1.

Proof. We will show later that the following limit exists for aperiodic renewal sequences

g(a)≜ lim
t→∞

[mt+a − mt] (1)

(a) However, we show that if this limit does exist, it is equal to a/EX1 as a consequence of elementary
renewal theorem. To this end, note that mt+a+b − mt = mt+a+b − mt+a + mt+a − mt. Taking limits on
both sides of the above equation, we conclude that g(a + b) = g(a) + g(b). The only nondecreasing
solution of such a g ∈ R

R+
+ is g(a) = ca, for all a ∈ R+ and some positive constant c. To show c = 1/EX1,

we define a sequence x ∈ RN
+ in terms of renewal function mt for each n ∈ N, as

xn ≜ mn − mn−1.

Note that ∑n
i=1 xi = mn and limn∈N xn = g(1) = c. Further recall that, if a sequence x ∈ RN converges,

then the running average sequence a ∈ RN defined as an ≜ 1
n ∑n

i=1 xi converges to the same limit. Hence,
we have the Cesàro mean converging to limn∈N

1
n ∑n

i=1 xi = limn∈N
mn
n = c. Therefore, we can conclude

c = 1/EX1 by elementary renewal theorem.
(b) If the renewal sequence is periodic with period d, the limit in (1) doesn’t exist, as shown in the following

example. However, the theorem is true for lattice again by elementary renewal theorem. We can define
xn ≜ mnd − m(n−1)d and observe that ∑n

i=1 xi = mnd and the Cesàro mean 1
n ∑n

i=1 xi converges to d/EX1
by elementary renewal theorem.

Example 1.3. Consider a renewal sequence with P{X1 = 1}= 1, that is, there is a renewal at every positive
integer time instant with unit probability. We observe that it is a periodic renewal sequence with period
d = 1. Now, for a = 0.25, and tn = n+(−1)na, we see that mtn = Ntn = n−1{n odd}, and mtn+a = n. It follows
that mtn+a − mtn = 1{n odd}, and hence limtn→∞ mtn+a − mtn does not exist. It follows that limt→∞ mt+a − mt
does not exist.
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Exercise 1.4. Let m be the renewal function associated with an aperiodic renewal sequence. Show
that the following limit exists

g(a)≜ lim
t→∞

[mt+a − mt].

Remark 1. For a renewal sequence with positive periodicity d > 0, there can be no more than one renewal at
each time instant nd. In this case,

lim
n→∞

P{renewal at nd} = d/EX1.

Corollary 1.5 (Delayed Blackwell’s Theorem). Consider an aperiodic and recurrent delayed renewal process S
with independent inter renewal times X with first inter renewal time distribution G and common inter renewal time
distribution F for (Xn : n ⩾ 2) such that inf{x ∈ R+ : F(x) = 1} = ∞. We denote the associated renewal function
as mD.
(a) If the renewal sequence is aperiodic, then limt→∞ mD

t+a − mD
t = a/EX2 for all a ⩾ 0.

(b) If renewal sequence has period d, then limn→∞ mD
(n+1)d − mD

nd = d/EX2.

2 Key Renewal Theorem

Theorem 2.1 (Key renewal theorem). Consider a recurrent renewal process S with i.i.d. inter renewal time se-
quence X having common distribution F and finite mean, associated renewal function m, and a directly Riemann
integrable function z ∈ D.
(a) If renewal sequence is aperiodic, then limt→∞

∫ t
0 zt−xdmx =

1
EX1

∫ ∞
0 ztdt.

(b) If renewal sequence has period d, then limn→∞
∫ nd

0 znd−xdmx =
d

EX1
∑k∈Z+

zkd.

Proposition 2.2 (Equivalence). Blackwell’s theorem and key renewal theorem are equivalent.

Proof. Let’s assume key renewal theorem is true. We fix a > 0 and select a simple function z ∈ R
R+
+ as an

indicator for the interval [0, a], i.e. zt ≜ 1[0,a](t) for any t ∈ R+, and z ∈ D from Proposition A.4.
(a) Let S be an aperiodic renewal sequence, then from Key Renewal Theorem, we have limt→∞[mt −

mt−a] = a/EX1.
(b) Let the period of renewal sequence S be d, then from Key Renewal Theorem, we have for limn→∞[mnd−a −

mnd] = d/EX1 for a < d. In this case, we have mnd−a = m(n−1)d and the result follows.
For the converse, we assume that Blackwell’s theorem holds true.

(a) We defer the formal proof of converse for an aperiodic renewal sequence to a later stage. We observe
that, from Blackwell theorem, it follows

lim
t→∞

dm(t)
dt

(a)
= lim

a→0
lim
t→∞

1
a
(mt+a − mt) = 1/EX1.

where in (a) we can exchange the order of limits under certain regularity conditions.
(b) When renewal sequence has period d, then dmx is an impulse at multiple of d, and

∫ nd
0 znd−xdmx =

∑n
k=0 z(n−k)d(m(k+1)d − mkd). The result follows from exchange of limits for dRI z ∈ D.

Remark 2. Key renewal theorem is very useful in computing the limiting value of some function g, where
gt is a probability or expectation of an event at an arbitrary time t, for a regenerative process. This value is
computed by conditioning on the time of last regeneration prior to time t.

Corollary 2.3 (Delayed key renewal theorem). Consider a recurrent delayed renewal process S with independent
inter renewal times X with first inter renewal time distribution G and common inter renewal time distribution F for
(Xn : n ⩾ 2). Let the renewal function be denoted by mD, z ∈ D be a directly Riemann integrable function.
(a) If delayed renewal sequence is aperiodic, then limt→∞

∫ t
0 zt−xdmx =

1
EX2

∫ ∞
0 ztdt.

(b) If delayed renewal sequence has period d, then limn→∞
∫ nd

0 znd−xdmx =
d

EX2
∑k∈Z+

zkd.

Remark 3. Any kernel function t 7→ Kt ≜ P{zt ∈ A, X1 > t}⩽ F̄(t), and hence K ∈D from Proposition A.4(b).
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A Directly Riemann Integrable

For each scalar h > 0 and natural number n ∈ N, we can define intervals In(h)≜ [(n− 1)h,nh), such that the
collection (In(h),n ∈ N) partitions the positive real-line R+. Consider a function z ∈ R+ → R+ bounded
over finite intervals, then we can denote the infimum and supremum of z in the interval In as

zh
n ≜ inf{zt : t ∈ In(h)} zh

n ≜ sup{zt : t ∈ In(h)} .

We can define functions zh,zh : R+ → R+ such that zh
t ≜ ∑n∈N zh

n1In(h)(t) and zh
t ≜ ∑n∈N zh

n1In(h)(t) for all
t ∈ R+. From the definition, we have zh ⩽ z ⩽ zh for all h ⩾ 0. The infinite sums of infimum and supremums
over all the intervals (In(h),n ∈ N) are denoted by∫

t∈R+

zh
t dt = h ∑

n∈N

zh
n,

∫
t∈R+

zh
t dt = h ∑

n∈N

zh
n.

Remark 4. Since zh ⩽ z ⩽ zh, we observe that
∫

t∈R+
zh

t dt ⩽
∫

t∈R+
zh

t dt. We observe that zh and zh are nonde-
creasing and nonincreasing in h respectively. As as h ↓ 0, if both left and right limits exist and are equal,
then the integral value

∫
t∈R+

ztdt is equal to the limit.

Definition A.1 (directly Riemann integrable (d.R.i.)). A function z : R+ 7→ R+ is directly Riemann integrable
and denoted by z ∈ D if the partial sums obtained by summing the infimum and supremum of h, taken over
intervals obtained by partitioning the positive axis, are finite and both converge to the same limit, for all
finite positive interval lengths. That is, ∑n∈N hzh

n < ∞ and limh↓0
∫

t∈R+
zh

t dt = limh↓0
∫

t∈R+
zh

t dt. The limit is
denoted by ∫

t∈R+

ztdt = lim
h↓0

∑
n∈N

hzh
n = lim

h↓0
∑

n∈N

hzh
n.

For a real function z ∈ RR+ , we can define the positive and negative parts by z+,z− ∈ R
R+
+ such that

z+t ≜ zt ∨ 0, and z−t ≜−(zt ∧ 0) for all t ∈ R+. If both z+,z− ∈ D, then z ∈ D and the limit is∫
R+

ztdt ≜
∫

R+

z+t dt −
∫

R+

z−t dt.

Remark 5. We compare the definitions of directly Riemann integrable and Riemann integrable functions.
For a finite positive M, a function z ∈ R[0,M] is Riemann integrable if limh↓0

∫ M
0 zh

t dt = limh↓0 h
∫ M

0 zh
t dt. In

this case, the limit is the value of the integral
∫ M

0 ztdt. For a function z ∈ RR+ ,
∫

t∈R+
ztdt = limM→∞

∫ M
0 ztdt,

if the limit exists. For many functions, this limit may not exist.

Remark 6. A directly Riemann integrable function over R+ is also Riemann integrable, but the converse
need not be true.

Lemma A.2. We define a map z ∈ R
R+
+ as zt ≜ ∑n∈N1En(t) for all t ∈ R+, where En ≜

[
n − 1

2n2 , n + 1
2n2

]
for each n ∈ N. Then, z is Riemann integrable, but not directly Riemann integrable.

Proof. We will show that z is Riemann integrable, however
∫

t∈R+
ztdt is always infinite.

(a) We observe that
∫

R+
1En(t)dt = 1/n2 and hence ∑n∈N

∫
R+

1En(t)dt = ∑n∈N 1/n2 < ∞. Interchang-
ing infinite sum and integral for positive terms by monotone convergence theorem, we obtain∫

t∈R+
ztdt < ∞, and hence z is Riemann integrable.

(b) It suffices to show that zm(h) = 1 for all m ∈ N. Since the collection (In(h) : n ∈ N) partitions the
entire R+, for each n ∈ N there exists an m ∈ N such that En ∩ Im(h) ̸= ∅, and the result follows.
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Exercise A.3 (Necessary conditions for d.R.i.). If a function z : R+ → R+ is directly Riemann inte-
grable, then show that z is bounded and continuous a.e.

Exercise A.4 (Sufficient conditions for d.R.i.). Show that if any of the following conditions hold for
a function z : R+ → R+, then it is directly Riemann integrable.

(a) z is monotone nonincreasing, and Lebesgue integrable.

(b) z is bounded above by a directly Riemann integrable function.

(c) z has bounded support.

(d) z is continuous, and has finite support.

(e) z is continuous, bounded, and
∫

t∈R+
zh

t dt is bounded for some h > 0.

(f)
∫

t∈R+
zh

t dt is bounded for some h > 0.

Exercise A.5. For any directly Riemann integrable function z : R+ → R+ show that limt→∞ zt =

limn→∞ zh
n.

Proposition A.6 (Tail Property). If z : R+ → R+ is directly Riemann integrable and has bounded integral value,
then limt→∞ zt = 0.

Proof. If z ∈ D, then h ∑n∈N zh
n < ∞ for all h > 0. This implies that the infinite positive sum ∑n zh

n is finite,
and hence limn→∞ zh

n = limt→∞ zt = 0.

Corollary A.7. Any distribution F : R+ → [0,1] with finite mean µ, the complementary distribution function F̄ is
d.R.i.

Proof. Since F̄ is monotonically nonincreasing and its Lebesgue integration is
∫

R+
F̄(t)dt = µ, the result

follows from Proposition A.4(a).
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