
Lecture-15: Discrete Time Markov Chains

1 Introduction

Definition 1.1. Consider a discrete random process X : Ω →XZ+ , where Xn is the state of the process at
time n. The set X is called the state space of discrete time process X. The history of the process until time
n is denoted by Fn ≜ σ(X0, . . . , Xn). The natural filtration of process X is denoted by F• ≜ (Fn : n ∈ Z+).

Remark 1. Let Z : Ω → ZN be an i.i.d. sequence. We have seen that i.i.d. sequences are easiest discrete
time processes. However, they don’t capture correlation well. Hence, we look at the discrete time
stochastic processes of the form

Xn+1 = f (Xn, Zn+1),

where Z is independent of initial state X0 ∈ X, and f : X× Z→ X is a measurable function. For process
X, the history until time n is Fn ⊆ σ(X0, Z1, . . . , Zn).

Definition 1.2. A discrete random process X : Ω → XZ+ adapted to its natural filtration F• is said to
have the Markov property if

P({Xn+1 ⩽ x}
∣∣ Fn) = P({Xn+1 ⩽ x}

∣∣ σ(Xn)), n ∈ Z+.

Definition 1.3. For a countable set X, a stochastic process X : Ω →∈ XZ+ is called a discrete time Markov
chain (discrete time Markov chain) if it satisfies the Markov property.

Remark 2. For a discrete Markov process X : Ω→XZ+ , we have for all n∈Z+ and states x0, x1, . . . , xn−1, x,y∈
X,

P({Xn+1 = y} | {Xn = x, Xn−1 = xn−1, . . . , X0 = x0}) = P({Xn+1 = y} | {Xn = x}).

Definition 1.4. For a countable state space X, we define the set of probability measures on X as

M(X)≜

{
ν ∈ [0,1]X : ∑

x∈X
νx = 1

}
.

1.1 Homogeneous Markov chain

Definition 1.5. We can define the transition probability pxy(n) ≜ P({Xn+1 = y} | {Xn = x}), for each
time n ∈ Z+. When the transition probability does not depend on n, the discrete time Markov chain is
called homogeneous. The matrix p ∈M(X)X is called the transition matrix.

Example 1.6 (Random walk on lattice). For the random i.i.d. step-size sequence Z : Ω → (Zd)N hav-
ing common probability mass function p ∈ M(Zd), we denote the random particle location on a d-
dimensional lattice after n steps as Xn ≜ ∑n

i=1 Zi. Let F• be the natural filtration associated with process
X. We will show that X is a homogeneous discrete time Markov chain. For a lattice point x ∈ Zd, we
can write the conditional expectation

E[1{Xn=x} | Fn−1] = ∑
y∈Zd

E[1{Xn−1=x−y}1{Zn=y} | Fn−1] = ∑
y∈Zd

p(y)1{Xn−1=x−y} = E[1{Xn=x} | σ(Xn−1)].

Markov property of the random walk follows from the independence of random step-sizes. Homo-
geneity follows from the identical distribution of random step-sizes.
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Definition 1.7. If a non-negative matrix A ∈ RX×X
+ satisfies ∑y∈X axy ⩽ 1 for all x ∈ X, then A is called

a sub-stochastic matrix. If ∑y∈X axy = 1 for all x ∈ X, then A is called a stochastic matrix. If A and A⊤ are
stochastic matrices, then A is called doubly stochastic matrix.

Remark 3. Let 1 ≜ {1}X be the all one vector. For a stochastic matrix, the all one column vector 1⊤ is a
right eigenvector with eigenvalue unity, i.e. A1⊤ = 1⊤.

Remark 4. The transition matrix p ∈M(X)X is stochastic matrix. Each row px ≜ (pxy : y ∈ X) ∈M(X)
of the stochastic matrix p is a distribution on the state space X. In particular, px is the conditional
distribution of Xn+1 given Xn = x.

Remark 5. For a doubly stochastic matrix A, the all one row vector 1 is a left eigenvector and 1⊤ is a
right eigenvector, both with eigenvalue unity. To see this we observe that 1A⊤ = (A1⊤)⊤ = 1.

1.2 Transition graph

Consider a discrete time Markov chain X : Ω → XZ+ with probability transition matrix p ∈M(X)X.

Definition 1.8. We define edge set E to be the collection of ordered pairs of states (x,y)∈X×X such that
pxy > 0. That is, E ≜

{
(x,y) ∈ X×X : pxy > 0

}
. For each edge e ∈ E, we define the weight function w :

E → [0,1] such that we ≜ pxy for each edge e = (x,y) ∈ E. Then a transition matrix p can be represented
by a directed edge-weighted graph G ≜ (X, E,w).

Definition 1.9. We say that x is a neighbor of y, when (x,y) ∈ E and denote it by x ∼ y. The out
neighborhood of x is defined as nbrout(x)≜ {y ∈ X : (x,y) ∈ E} and has cardinality degout(x)≜ |nbrout|.
The in neighborhood of x is defined as nbrin(x) ≜ {y ∈ X : (y, x) ∈ E} and has cardinality degin(x) ≜
|nbrin|.

Remark 6. We observe that for a fixed vertex x ∈ X, we have ∑y∈nbrout(x) wxy = 1.

Remark 7. Any homogeneous finite state Markov chain X : Ω → XZ+ can be thought of as a random
walk on the directed edge weighted transition graph G = (X, E,w). The location of a single particle on
this graph after n random steps is denoted by Xn, where particle can jump from one location to another
if it is connected by an edge and with the jump probability being equal to the edge weight. That is,

P({Xn+1 = y} | {Xn = x}) = wxy1{(x,y)∈E}.

1.3 Chapman Kolmogorov equations

Definition 1.10. Let ν(n) ∈M(X) denote the marginal distribution of the process X at time n ∈ Z+, i.e.
νx(n)≜ P{Xn = x} for all x ∈ X.

Definition 1.11. We can define n-step transition probabilities for a homogeneous Markov chain X : Ω →
XZ+ for states x,y ∈ X and non-negative integers m,n ∈ Z+ as

p(n)xy ≜ P({Xn+m = y} | {Xm = x}).

Remark 8. It follows from the Markov property and the law of total probability that p(m+n)
xy =∑z∈X p(m)

xz p(n)zy .
We can write this result compactly in terms of transition probability matrix p as p(n) = pn.

Remark 9. We can write this vector ν(n) in terms of initial probability vector ν(0) and the transition
matrix P as ν(n) = ν(0)pn.

Remark 10. Let f ∈ RX be a vector then we define its inner product with a real-valued matrix P ∈ RX×X

as a vector P f ≜ ⟨P, f ⟩ ∈ RX, where (P f )x ≜ ⟨px, f ⟩ ≜ ∑y∈X pxy fy, for all x ∈ X. It follows that we
can write (p f )x = E[ f (X1) | {X0 = x}] = Ex f (X1) for a time homogeneous discrete time Markov chain
X : Ω → XZ+ with transition probability matrix p.

1.4 Strong Markov property (SMP)

Definition 1.12. Let τ : Ω →Z+ be an almost surely finite stopping time adapted to the natural filtration
F• of the stochastic process X : Ω → XZ+ . Then the process X satisfies the strong Markov property if
P({Xτ+1 = y} | {Xτ = x, . . . , X0 = x0}) = pxy for all states x0, . . . , xn−1, x,y ∈ X and stopping time τ.
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Lemma 1.13. Discrete time Markov chains satisfy the strong Markov property.

Proof. Let X be a Markov chain and an event A = {Xτ = x, . . . , X0 = x0} ∈ Fτ . Then, we have

P({Xτ+1 = y} ∩ A) = ∑
n∈Z+

P({Xτ+1 = y,τ = n} ∩ A) = ∑
n∈Z+

pxyP(A ∩ {τ = n}) = pxyP(A).

This equality follows from the fact that the event {τ = n} is completely determined by {X0, . . . , Xn}

Example 1.14 (Non-stopping time). As an exercise, if we try to use the Markov property on arbitrary
random variable τ, the SMP may not hold. Consider a Markov chain X : Ω →XZ+ with natural filtration
F•. We define a non-stopping time random variable τy : Ω → Z+ for some state y ∈ X

τy ≜ inf{n ∈ Z+ : Xn+1 = y} .

We can verify that τy is not a stopping time for the process X. From the definition of τy, we have
Xτy+1 = y, and for x ∈ X \ {y} such that pxy > 0

P
({

Xτy+1 = y
}
|
{

Xτy = x, . . . , X0 = x0

})
= 1 ̸= P({X1 = y} | {X0 = x}) = pxy.

Example 1.15 (Regeneration points of discrete time Markov chain). Let x0 ∈ X be a fixed state and
τ+

x0
(0) ≜ 0. Let τ+

x0
(n) denote the stopping times at which the Markov chain visits state x0 for the nth

time. That is,
τ+

x0
(n)≜ inf

{
k > τ+

x0
(n − 1) : Xk = x0

}
.

If τ+
x0

is almost surely finite, then (Xτ+x0+m : m ∈ Z+) is a stochastic replica of X with X0 = x0 and can be
studied as a regenerative process.

1.5 Random mapping representation

Proposition 1.16. Any homogeneous discrete time Markov chain X : Ω → XZ+ on finite state space X has a
random mapping representation. That is, there exists an i.i.d. sequence Z : Ω → ZN and a measurable function
f : X× Z→ X such that Xn = f (Xn−1, Zn) for each n ∈ N.

Proof. We can order any finite set, and hence we can assume the finite state space X= [N], without any
loss of generality. For xth row of the transition matrix p ∈M(X)X, we can define

Fx,k ≜
k

∑
j=1

pxj = P({Xn+1 ⩽ k}
∣∣ {Xn = x}).

We define Z ≜ [0,1] and assume Z : Ω → ZN to be a sequence of i.i.d. uniform random variables. We
define a function f : [N]× Z→ [N] for each x ∈ X and z ∈ Z as

f (x,z)≜
N

∑
k=1

k1{Fx,k−1<z⩽Fx,k} =
N

∑
k=1

k1(Fx,k−1,Fx,k ]
(z).

To show that this choice of function f and i.i.d. sequence Z works, it suffices to show that pxy =
P{ f (x, Zn) = y}. Indeed, we can write

P{ f (x, Zn) = y} = E1{ f (x,Zn)=y} = E1(Fx,y−1,Fx,y ](Zn) = Fx,y − Fx,y−1 = pxy.
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