Lecture-15: Discrete Time Markov Chains

1 Introduction

Definition 1.1. Consider a discrete random process X : O — X%+, where X,, is the state of the process at

time n1. The set X is called the state space of discrete time process X. The history of the process until time
A

n is denoted by F, £ 7(Xy,...,Xy). The natural filtration of process X is denoted by Fo = (F,:n € Z).

Remark 1. Let Z : Q — ZN be an i.i.d. sequence. We have seen that i.i.d. sequences are easiest discrete
time processes. However, they don’t capture correlation well. Hence, we look at the discrete time
stochastic processes of the form

Xn+l = f(anZnJrl)'

where Z is independent of initial state Xy € X, and f : X x Z — X is a measurable function. For process
X, the history until time nis F,, C 0(Xo,Z1,...,Zy).

Definition 1.2. A discrete random process X : Q — X%+ adapted to its natural filtration J, is said to
have the Markov property if

P({Xp41 <x} | Fa) = P({Xpi1 <x} | 0(X0)), neZy.

Definition 1.3. For a countable set X, a stochastic process X : () =€ XZ+ is called a discrete time Markov
chain (discrete time Markov chain) if it satisfies the Markov property.

Remark 2. For a discrete Markov process X : () — XZ+,wehave foralln € Z and states xg,x1,...,X,_1,X,J €
X,
P({ X1 =y} [{Xn =%, Xp1=xp—1,..., Xo = x0}) = P({Xys1 =y} [ {Xn = x}).

Definition 1.4. For a countable state space X, we define the set of probability measures on X as

M(X) 2 {ve 0,1 : ¥ vx :1}.

xeX

1.1 Homogeneous Markov chain

Definition 1.5. We can define the transition probability py, (1) £ P({X,41 =y} | {X, = x}), for each
time n € Z. When the transition probability does not depend on #, the discrete time Markov chain is
called homogeneous. The matrix p € M (X)¥ is called the transition matrix.

Example 1.6 (Random walk on lattice). For the random i.i.d. step-size sequence Z : Q — (Z4)N hav-
ing common probability mass function p € M (Z“), we denote the random particle location on a d-
dimensional lattice after n steps as X, = Y. 1 Z;. Let F, be the natural filtration associated with process
X. We will show that X is a homogeneous discrete time Markov chain. For a lattice point x € Z¢, we
can write the conditional expectation

E[1ix,—x} | Fn1]= ) Ellix, ;—x—y} Lizo=p} | Fual = Y PW)ix, 1=x—y} = Ellx,=x} | 0(Xn1)]-
yezd yezd

Markov property of the random walk follows from the independence of random step-sizes. Homo-
geneity follows from the identical distribution of random step-sizes.



Definition 1.7. If a non-negative matrix A € ]R?fxx satisfies ) cx axy < 1 for all x € X, then A is called

a sub-stochastic matrix. If -, cocayy =1 for all x € X, then A is called a stochastic matrix. If A and AT are
stochastic matrices, then A is called doubly stochastic matrix.

Remark 3. Let1£ {1}x be the all one vector. For a stochastic matrix, the all one column vector 1" is a
right eigenvector with eigenvalue unity, i.e. A1T =1T.

Remark 4. The transition matrix p € M(X)¥ is stochastic matrix. Each row px £ (px, : y € X) € M(X)
of the stochastic matrix p is a distribution on the state space X. In particular, p, is the conditional
distribution of X1 given X, = x.

Remark 5. For a doubly stochastic matrix A, the all one row vector 1 is a left eigenvector and 1" is a
right eigenvector, both with eigenvalue unity. To see this we observe that 14T = (A17)T =1.

1.2 Transition graph
Consider a discrete time Markov chain X : Q) — X%+ with probability transition matrix p € M (X)¥.

Definition 1.8. We define edge set E to be the collection of ordered pairs of states (x,) € X x X such that
pxy > 0. Thatis, E £ {(x,y) € X x X: px, > 0}. For each edge e € E, we define the weight function w :
E — [0,1] such that w, = Py for each edge e = (x,y) € E. Then a transition matrix p can be represented
by a directed edge-weighted graph G = (X, E,w).

Definition 1.9. We say that x is a neighbor of y, when (x,y) € E and denote it by x ~ y. The out
neighborhood of x is defined as nbrou(x) £ {y € X : (x,y) € E} and has cardinality deg,,,.(x) £ [nbroy|-

The in neighborhood of x is defined as nbri,(x) = {y € X : (y,x) € E} and has cardinality deg; (x) =
Inbriy|.

Remark 6. We observe that for a fixed vertex x € X, we have ¥ cnproy(x) Wy = 1.

Remark 7. Any homogeneous finite state Markov chain X : Q) — X%+ can be thought of as a random
walk on the directed edge weighted transition graph G = (X, E,w). The location of a single particle on
this graph after n random steps is denoted by X,;, where particle can jump from one location to another
if it is connected by an edge and with the jump probability being equal to the edge weight. That is,

P({Xpt1 =y} [{Xn=1x}) = WayL{(xy)eE}-

1.3 Chapman Kolmogorov equations

Definition 1.10. Let v(n) € M (X) denote the marginal distribution of the process X at timen € Z, i.e.
vy(n) £ P{X, = x} forall x € X.

Definition 1.11. We can define n-step transition probabilities for a homogeneous Markov chain X : () —
X%+ for states x,y € X and non-negative integers m,n € Z as

o) & P({Xsm =y} | {Xm = x}).

Remark 8. It follows from the Markov property and the law of total probability that pﬁc’;*”) =Y ,exP ,(CT) pgg) .

We can write this result compactly in terms of transition probability matrix p as p{™) = p".

Remark 9. We can write this vector v(n) in terms of initial probability vector v(0) and the transition
matrix P as v(n) = v(0)p".

Remark 10. Let f € RX be a vector then we define its inner product with a real-valued matrix P € R**X
as a vector Pf = (P, f) € RX, where (Pf)y £ (px, f) £ Yyex Pxyfy, for all x € X. It follows that we
can write (pf)x =E[f(X1) | {Xo = x}] = Ef(X7) for a time homogeneous discrete time Markov chain
X : Q — X%+ with transition probability matrix p.

1.4 Strong Markov property (SMP)

Definition 1.12. Let 7: () — Z_ be an almost surely finite stopping time adapted to the natural filtration
F. of the stochastic process X : O — X%+. Then the process X satisfies the strong Markov property if
P{Xrp1 =y} [ {Xe=x,..., X0 =x0}) = pxy for all states xo, ..., x,_1,%y € X and stopping time 7.



Lemma 1.13. Discrete time Markov chains satisfy the strong Markov property.

Proof. Let X be a Markov chain and an event A = {X; = x,..., Xy = x¢} € Fr. Then, we have

P{Xenn=y}nA)= ZZ: P{Xepi=yt=n}NA)= ZZ pryP(AN{T=n}) = pyP(A).

This equality follows from the fact that the event {T = n} is completely determined by {X,...,X,} O

Example 1.14 (Non-stopping time). As an exercise, if we try to use the Markov property on arbitrary
random variable 7, the SMP may not hold. Consider a Markov chain X : 0 — X%+ with natural filtration
Fe. We define a non-stopping time random variable 7, : () — Z, for some state y € X

oy =inf{n € Z; : Xy41 =y}.

We can verify that 7, is not a stopping time for the process X. From the definition of 7,, we have
Xz, +1 =y, and for x € X'\ {y} such that py, >0

P({Xqu1 =y} | {Xq =% Xo=x0} ) =1#P({X1 =y} | {Xo = x}) = Py,

Example 1.15 (Regeneration points of discrete time Markov chain). Let xo € X be a fixed state and
7(0) £ 0. Let 7} (1) denote the stopping times at which the Markov chain visits state xo for the nth

time. That is,
o (n) £inf{k > 1} (n—1): X =x0}.

If T} is almost surely finite, then (X :m € Z4 ) is a stochastic replica of X with Xy = xp and can be

T;B +m
studied as a regenerative process.

1.5 Random mapping representation

Proposition 1.16. Any homogeneous discrete time Markov chain X : Q — X%+ on finite state space X has a
random mapping representation. That is, there exists an i.i.d. sequence Z : Q) — ZN and a measurable function
f:X x Z — X such that X, = f(Xy—1,2Zn) for each n € N.

Proof. We can order any finite set, and hence we can assume the finite state space X = [N], without any
loss of generality. For xth row of the transition matrix p € M (X)X, we can define

k
Fx,k £ prj = P({Xn-i-l < k} ’ {Xﬂ = x})
=1

We define 2 £ [0,1] and assume Z : QO — ZN to be a sequence of i.i.d. uniform random variables. We
define a function f : [N] x Z — [N] for each x € X and z € Z as

N N
f(x,2) = k_Z:lk:u-{Fx,k—1<Z<Fx,k} - k_zlkn(lsx,k—lfpx,k} (2)-

To show that this choice of function f and i.i.d. sequence Z works, it suffices to show that py, =
P{f(x,Z,) = y}. Indeed, we can write

P{f(x,Zn) =y} =Elipvz,)=yy = BL(r,, y F, ) (Zn) = Fry — Fryo1 = Pxy-
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