

# Lecture-17: Invariant Distribution

## 1 Invariant distribution

**Definition 1.1.** For a time homogeneous Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}^+}$  with transition matrix  $p \in \mathcal{M}(\mathcal{X})^{\mathcal{X}}$ , a distribution  $\pi \in \mathcal{M}(\mathcal{X})$  is called *invariant* if it is a left eigenvector of the probability transition matrix  $p$  with eigenvalue unity, or

$$\pi = \pi p.$$

*Remark 1.* Fix  $n \in \mathbb{N}$ . Recall that  $\nu(n) \in \mathcal{M}(\mathcal{X})$  denotes the probability distribution of the Markov chain  $X$  at time step  $n$ , i.e.  $\nu_x(n) = P\{X_n = x\}$  for all states  $x \in \mathcal{X}$ . We observe that  $\nu(n) = \nu(0)p^n$  and hence if  $\nu(0) = \pi$ , then  $\nu(n) = \pi$  for all time-steps  $n \in \mathbb{N}$ .

**Definition 1.2.** For a time homogeneous Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}^+}$  with transition matrix  $p \in \mathcal{M}(\mathcal{X})^{\mathcal{X}}$ , the *stationary distribution* is defined as  $\nu(\infty) \triangleq \lim_{n \rightarrow \infty} \nu(n)$ .

*Remark 2.* For a Markov chain with initial distribution being invariant, the stationary distribution is invariant distribution.

**Example 1.3 (Simple random walk on a directed graph).** Let  $G = (\mathcal{X}, E)$  be a finite directed graph. We define a simple random walk  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{N}}$  on this graph as a Markov chain with state space  $\mathcal{X}$  and transition matrix  $P \in \mathcal{M}(\mathcal{X})^{\mathcal{X}}$  where  $p_{xy} \triangleq \frac{1}{\deg_{\text{out}}(x)} \mathbb{1}_{\{(x,y) \in E\}}$ . We observe that vector  $(\deg_{\text{out}}(x) : x \in \mathcal{X})$  is a left eigenvector of the transition matrix  $P$  with unit eigenvalue. Indeed we can verify that

$$\sum_{x \in \mathcal{X}} \deg_{\text{out}}(x) p_{xy} = \sum_{x \in \mathcal{X}} \mathbb{1}_{\{(x,y) \in E\}} = \deg_{\text{out}}(y).$$

Since  $\sum_{x \in \mathcal{X}} \deg_{\text{out}}(x) = 2|E|$ , it follows that  $\pi \in \mathcal{M}(\mathcal{X})$  defined by  $\pi_x \triangleq \frac{\deg_{\text{out}}(x)}{2|E|}$  for each  $x \in \mathcal{X}$ , is the equilibrium distribution of this simple random walk.

## 1.1 Existence

**Proposition 1.4.** Consider an irreducible and aperiodic homogeneous discrete time Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}^+}$  with transition matrix  $p \in \mathcal{M}(\mathcal{X})^{\mathcal{X}}$  and starting from initial state  $X_0 = x$ . We define a positive vector  $\tilde{\pi}^x \in \mathbb{R}_+^{\mathcal{X}}$  as  $\tilde{\pi}_y^x \triangleq \mathbb{E}_x N_y(\tau_x^+(1))$  for all  $y \in \mathcal{X}$ . Then the following statements hold true.

- (a) If  $x$  is recurrent, then  $\tilde{\pi}^x$  is a left eigenvector of  $p$  with eigenvalue unity. That is,  $\tilde{\pi}^x = \tilde{\pi}^x P$ .
- (b) If  $x$  is positive recurrent, then  $\pi \triangleq \frac{\tilde{\pi}^x}{\mathbb{E}_x \tau_x^+(1)}$  is an invariant distribution of  $p$ .

*Proof.* (a) We first show that  $\tilde{\pi}^x$  is a left eigenvector for the transition probability matrix  $p$  for time homogeneous discrete time Markov chain  $X$ . Recall that  $N_y(\tau_x^+(1)) = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{\tau_x^+(1) \geq n\}} \mathbb{1}_{\{X_n = y\}}$  and  $p_{wz} = P(\{X_{n+1} = z\} \mid \{X_n = w\})$ . Using the monotone convergence theorem, we can write

$$\sum_{w \in \mathcal{X}} \tilde{\pi}_w^x p_{wz} = \sum_{w \in \mathcal{X}} \sum_{n \in \mathbb{N}} P_x \{ \tau_x^+(1) \geq n, X_n = w \} P(\{X_{n+1} = z\} \mid \{X_n = w\}).$$

We first focus on the term  $w = x$ . We see that  $\{X_n = x, \tau_x^+(1) \geq n\} = \{\tau_x^+(1) = n\}$  and hence for a recurrent state  $x$ , we have

$$\tilde{\pi}_x^x p_{xz} = p_{xz} \sum_{n \in \mathbb{N}} P_x \{ \tau_x^+(1) = n \} = p_{xz} P_x \{ \tau_x^+ < \infty \} = p_{xz}.$$

We next focus on the terms  $w \neq x$ . We observe that  $\{X_n = w, \tau_x^+ \geq n\} = \{X_n = w, \tau_x^+ \geq n+1\} \in \mathcal{F}_n$ . From the Markov property for  $X$ , we have

$$p_{wz} = P(\{X_{n+1} = z\} \mid \{X_n = w\}) = P(\{X_{n+1} = z\} \mid \{X_n = w, \tau_x^+ \geq n+1, X_0 = x\}).$$

Therefore, from the definition of conditional probability, we obtain  $p_{wz} P_x \{X_n = w, \tau_x^+ \geq n+1, X_0 = x\} = P_x \{X_{n+1} = z, X_n = w, \tau_x^+ \geq n+1\}$ , and hence

$$\begin{aligned} \sum_{w \neq x} \tilde{\pi}_w^x p_{wz} &= \sum_{n \in \mathbb{N}} \sum_{w \neq x} P_x \{X_n = w, X_{n+1} = z, \tau_x^+ \geq n+1\} = \sum_{n \in \mathbb{N}} P_x \{X_{n+1} = z, \tau_x^+ \geq n+1\} \\ &= \tilde{\pi}_z^x - P_x \{X_1 = z, \tau_x^+ \geq 1\} = \tilde{\pi}_z^x - p_{xz}. \end{aligned}$$

The result follows from summing both the cases.

(b) For a positive recurrent state  $x$ , it suffices to show that  $\pi$  is a distribution on state space  $\mathcal{X}$ . Recall that  $\tilde{\pi}_y^x = \mathbb{E}_x N_y(\tau_x^+(1))$  and  $\sum_{y \in \mathcal{X}} N_y(\tau_x^+(1)) = \tau_x^+(1)$ , it follows from the monotone convergence theorem that

$$\sum_{y \in \mathcal{X}} \tilde{\pi}_y^x = \mathbb{E}_x \sum_{y \in \mathcal{X}} N_y(\tau_x^+(1)) = \mathbb{E}_x \tau_x^+(1) < \infty.$$

□

*Remark 3.* For the positive vector  $\tilde{\pi}^x$  defined in Proposition 1.4, we have  $0 \leq \tilde{\pi}_y^x \leq \mathbb{E}_x \tau_x^+(1)$  for all states  $y \in \mathcal{X}$ . In addition,  $N_x(\tau_x^+(1)) = 1$  and hence  $\tilde{\pi}_x^x = 1$ .

## 1.2 Uniqueness

**Definition 1.5.** Consider a time homogeneous Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$  with transition probability matrix  $p \in \mathcal{M}(\mathcal{X})^{\mathcal{X}}$ . A function  $h \in \mathbb{R}^{\mathcal{X}}$  is called *harmonic at  $x$*  if  $h(x) = \mathbb{E}_x h(X_1) = (ph)_x = \sum_{y \in \mathcal{X}} p_{xy} h(y)$ . A function is *harmonic on a subset  $D \subset \mathcal{X}$*  if it is harmonic at every state  $x \in D$ .

**Lemma 1.6.** For a finite state irreducible Markov chain, a function  $h$  harmonic on all states in  $\mathcal{X}$  is a constant.

*Proof.* Suppose  $h$  is not a constant, then there exists a state  $x \in \mathcal{X}$ , such that  $h(x) \geq h(y)$  for all states  $y \in \mathcal{X}$ . Since the Markov chain is irreducible, there exists a state  $z \in \mathcal{X}$  such that  $p_{xz} > 0$ . Let's assume  $h(z) < h(x)$ , then

$$h(x) = p_{xz} h(z) + \sum_{y \neq z} p_{xy} h(y) < h(x).$$

This implies that  $h(x) = h(z)$  for all states  $z$  such that  $p_{xz} > 0$ . By induction, this implies that  $h(x) = h(y)$  for any state  $y$  reachable from state  $x$ . Since all states are reachable from state  $x$  by irreducibility, this implies  $h$  is a constant on the state space  $\mathcal{X}$ . □

**Corollary 1.7.** For any irreducible and aperiodic finite state Markov chain, there exists a unique invariant distribution  $\pi$ .

*Proof.* For an aperiodic and irreducible discrete time Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$  with finite state space  $\mathcal{X}$ , we have  $\mathbb{E}_x \tau_y^+(1) < \infty$  for all states  $x, y \in \mathcal{X}$ . In particular,  $X$  is positive recurrent and hence there exists a positive invariant distribution  $\pi \in \mathcal{M}(\mathcal{X})$ . Further, from previous Lemma we have that the dimension of null-space of  $(p - I)$  is unity. Hence, the rank of  $p - I$  is  $|\mathcal{X}| - 1$ . Therefore, all vectors satisfying  $v = vp$  are scalar multiples of  $\pi$ . □

## 1.3 Stationary distribution

**Theorem 1.8.** For a finite state irreducible and aperiodic Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$ , its invariant distribution is same as its stationary distribution.

*Proof.* For a finite state irreducible and aperiodic discrete time Markov chain  $X : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$ , we have  $\mathbb{E}_x \tau_y^+(1) < \infty$  and hence  $P_x \{\tau_y^+(1) < \infty\} = 1$  for all states  $x, y \in \mathcal{X}$ . That is, the return times are finite almost surely, and hence we can apply strong Markov property at these stopping times to obtain that discrete time Markov chain  $X$  is a regenerative process with delayed renewal sequence  $\tau_y^+ : \Omega \rightarrow \mathbb{N}^{\mathbb{N}}$ , where  $\tau_y^+(0) \triangleq 0$ , and  $\tau_y^+(k) \triangleq \inf \{n > \tau_y^+(k-1) : X_n = y\}$ . We can create an on-off alternating renewal

function on this discrete time Markov chain  $X$ , which is on when in state  $y$ . Then, from the limiting on probability of alternating renewal function, we know that

$$\pi_y \triangleq \lim_{n \rightarrow \infty} P_x \{X_n = y\} = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \mathbb{1}_{\{X_k=y\}} = \frac{1}{\mathbb{E}_y \tau_y^+(1)}.$$

We observe that  $\pi_y = \frac{\tilde{\pi}_y^y}{\mathbb{E}_y \tau_y^+(1)}$  for each state  $y \in \mathcal{X}$ . From the uniqueness of invariant distribution, it follows that  $\pi$  is the unique invariant distribution of the discrete time Markov chain  $X$ . We observe that  $\pi_x$  is the long-term average of the amount of time spent in state  $x$  and from renewal reward theorem  $\pi_x = \frac{1}{\mathbb{E}_x \tau_x^+(1)}$ .  $\square$