Lecture-19: Embedded Markov chain and sojourn times

1 State Evolution

For a time homogeneous Markov process X : Q — X® on countable state space X C R with sample
paths that are right continuous with left limits (rcll), we wish to characterize the transition probability
kernel P: Ry — M(X)%, where Pyy(t) e P({Xs+t =y} ‘ {Xs=x}) for all s,t € Ry. To this end, we
define the sojourn time in any state, the jump times, and the jump transition probabilities.

1.1 Jump time and embedded chain

Consider a right continuous countable state stochastic process X : Q — XR+ and denote its natural
filtration by Fo = (F;: t € R}) where F; 2 0(X;,s <t) forall t € Ry.

Definition 1.1 (Jump instants). Let Sy £ 0, then the nth jump instant of X is defined inductively as
Sn = il’lf{l’ >S5, 1: Xt # Xsn_l }

The non decreasing random sequence S : O — RY is called the jump instants sequence.

Definition 1.2 (Embedded chain). Sampling the rcll process X at the jump instants in S, we derive the
associated embedded jump chainZ : Q0 — XN, such that the state of the process X at the nth jump instant
Sy is denoted by Z, = Xg,, for each n € IN.

Definition 1.3 (Sojourn times and jump counting process). By definition, the process X remains in
state Z,_1 during the interval [S,,_1,Sy), and the sojourn time for the process X in the state Z, 1 is

defined as T, £ S, — S,_1. The counting process associated with jump instants sequence S is denoted
by N: Q) — 7%+, where the number of jumps for process X in duration (0,¢] is denoted by

Nt é Z ]I{Snét}
nelN

Lemma 1.4. Consider a rcll countable state stochastic process X : Q) — XR+ with its natural filtration Fo. Each
term of the associated jump time sequence S : Q — RY is adapted to F,.

Proof. Since X is rcll, it is progressively measurable, and hence the event {S, <t} € F. O

Remark 1. From the definition of jump instants, it follows that the history until time ¢ is
Ft=0(S0,(Z0,T1),(Z1,T2),...,(ZN,, Ar)).

We can verify that s, = 0(So,(Zo, T1),...,(Zn-1,Tn), Zn).

Definition 1.5 (Excess time). From the definition of excess time as the time until next transition, we can
write the excess time for rcll process X in state Zy;, at time t € R as

Y; £inf{s > 0: X5 # X¢}.

Remark 2. We observe that Y; is the excess remaining time the process spends in state X; at instant f.
Thatis, X;,y, # X, and further T, = Y5, foreachn € N.



1.2 Holding time in a state for continuous time Markov chains

Remark 3. For a time homogeneous continuous time Markov chain X : () — xR+ the distribution of
excess time Y; conditioned on the current state X;, doesn’t depend on time ¢. Hence, we can define the
following conditional complementary distribution of excess time as

E(u)=2P{Yi>u} [ {Xs=x})=P({Yo>u} | {Xo=x}) =P {Yo > u}.

Lemma 1.6. For a homogeneous continuous time Markov chain X : Q0 — XR+, there exists a positive sequence
v € RY, such that Fy(u) = e~*"* for each state x € X and time t € R.

Proof. We fix a state x € X and time ¢ € R, and observe that the function F; € [0,1] is non negative, non
increasing, and right continuous in u. Using the Markov property and time homogeneity of process X,
we can show that F; satisfies the semigroup property. In particular,

Fe(u+0) =PV >u+v}|{Xi=x}) =P({Y: > u,Yiry > v} |[{Xs = x}) = Fx (1) Fc(0).

The only continuous non increasing function F; € [0,1]R+ that satisfies semigroup property is an expo-
nential function with a negative exponent. O

Example 1.7 (Poisson process). Consider the Poisson counting process N : (2 — ZE* with homo-
geneous rate A. Using the stationary independent increment property, we have for all u > 0

Ei(u) =P({Y; > u} | {N; = i}) = P{Nisw = i} | {N; = i}) = P {Nisu — Ny = 0} = P{Y; > u} = e~

Lemma 1.8. Consider a homogeneous continuous time Markov chain X with jump instant sequence S : () —
RN. If S,,_1 is almost surely finite, then sojourn time Ty, is a continuous memoryless random variable, and the
sequence of sojourn times (T; : j > n) is independent of the past Fs, | conditioned on state Z,, 1.

Proof. We observe that the sojourn time T, equals the excess time Y5 ,, where the process remains
in state Z,_; = Xg, | in the duration S,_; + [0,T;;). Using the strong Markov property at stopping
time S,_1, we can write the conditional complementary distribution of T,, given any historical event
HeTs, ,andu>0as

P{Tw>u}|{Zy-1 =x}NH)=P({Ys, , >u}|{Xs, ,=x}NH)=F(u).
O

Corollary 1.9. If Z,,_1 = x, then the holding time T, is an exponential random variable with rate vy.

Definition 1.10 (Transition rate). For a time homogeneous continuous time Markov chain X : O — xR+,
the random holding time in a state x € X is exponentially distributed with the rate called the transition
rate out of state x denoted by vy.

Definition 1.11 (Pure jump). Consider a time homogeneous continuous time Markov chain X : () —
XR+. A state x € X is called instantaneous if v, = oo, stable if vy € (0,00), and absorbing if vy = 0. If X has
no instantaneous states, then it is called pure jump.

Remark 4. Transition rate out of a state x is the inverse of mean holding time in this state x, i.e. vy =
1/E,T;. Therefore, the mean holding time [E,T; in state x is co in an absorbing state, zero in an instan-
taneous state, and almost surely finite and non-zero in a stable state.

Definition 1.12. A pure jump continuous time Markov chain X : () — XR+ with
(i) all stable states and infyco vy = v > 0 is called stable, and
(ii) sup, vy <V < oo is called regular.

Example 1.13 (Non-regular continuous time Markov chain). For the countable state space IN, consider
the probability transition matrix P such that p, 41 = 1 and the exponential holding times with rate
vy, = n? for each state n € N. Clearly, sup, .\ Vn = 0, and hence it is not regular.

Remark 5. Pure jump continuous time Markov chain with finite stable states are stable and regular. We
will focus on pure jump homogeneous continuous time Markov chain over countably infinite states,
that are stable and regular.



1.3 Jump instants and embedded chain for continuous time Markov chains
Proposition 1.14. For a stable continuous time Markov chain X, the jump instants are stopping times.

Proof. For a stable continuous time Markov chain X, we let 0 < v < inf,cx vy. Then, by coupling in
Appendix we have a sequence of i.i.d. random variables T : QO — RY, such that T, < T, almost surely

and ET, = 1/v for each n € N. Defining S, = Y_""_; T}, it follows that S, < S, for each n € N. Since S,
is sum of n almost surely finite independent random variables, it is finite almost surely. It follows that
Sy is finite almost surely. O

Proposition 1.15. For a reqular continuous time Markov chain X, the number of jumps N; is almost surely
finite in duration (0,t] for all finite times t € R..

Proof. Let X be a regular continuous time Markov chain and sup, . vx < v < co. Then, by coupling in
Appendix we have a sequence of i.i.d. random variables T : (3 — IR]I;], such that T, > T, almost surely
and ET, = 1/v for each n € IN. Defining S, £ . T;and N; =S Y eN 1{§n<f}’ it follows that S, > S,
foreachn € N and N; < N, for all t € R;. Since N is a Poisson counting process with finite rate v, it is
almost surely finite at all ¢ € IR and the result follows. O

Remark 6. From the strong Markov property and the time-homogeneity of the continuous time Markov
chain X : Q — XR+ and definition of embedded chain, we see that for any state x,iy € X

P{Zn =y} [{Zn1=2x}) = ny(sn—lfsn) = ny(OITn)'

Remark 7. From the law of total probability, it follows that for any rcll stochastic process X : Q) — XR+
with countable state space X, the sum of jump transition probabilities ), ., Pxy(Sy-1,5:) = 1 for all
states Z,,_1 = x € X.

Lemma 1.16. For a stable continuous time Markov chain X : Q — XR+, the jump probability from state Z,,_1
to state Z,, depends solely on Z,,_1 and is independent of the the past and the sojourn time T),.

Proof. Since X is stable, each jump instant is a stopping time. Fix states x,y € X and a historical event
H € Js, .. From the definition of conditional probability, we write

P({Ty > 1, Zy = y} | {Zur = X} VH) = P({Xs, =y} | {Tu > ,Xs, , = x} NH)P({Ty > u} | {Z, 1 = x} N H).

From the time homogeneity and strong Markov property applied to stopping time S,,_1, we get P({T,, > u} |
{Z,_1 =x}NH) = F(u). We further observe that {T,, > u,Xs _, =x}NH={X;=x,t€S,_1+[0,u]}N

H € Jg, 1y From the definition of excess time, we can write S, =S,y +u +Ys, 4, forany u € [0, T,].
Again, applying the time homogeneity and Markov property of the continuous time Markov chain X,
and the memoryless property of excess time Y, we obtain

P({Xs, =y} [ {Tw > u,Xs, , =x} N H) = P({ X5, ,survs, 0 =¥} [ {Xs, hu=¥}) = Puy(0,Y0).
This implies that sojourn time distribution and jump transision probabilities are independent. O

Definition 1.17. The jump process Z is also sometimes referred to as the embedded discrete time Markov
chain of the pure jump continuous time Markov chain X. The corresponding jump transition probabilities
are defined for each state transition pair x,y € X as

Pxy = ny(snflfsn) = P({Xsn :]/} ’ {Xan = x})

Remark 8. If vy = 0, then for any u > 0, we have P({Yp > u} | {Xo = x}) =1, and hence S; = co almost
surely whenever Xy = x. By convention, we set pyy = 1 and py, = 0 for all states y # x.

Corollary 1.18. The transition probability matrix p £ (pxy, : x,y € X) for embedded Markov chain Z is stochas-
tic, and if vy > 0 then pyy = 0.

Proof. Recall pyy = Pyy(S1). If vy > 0, then limy ;00 P({Yo > u}|{Xo = x}) = 0, and hence S; is finite
almost surely. By definition X5, # Xy = x, and hence pyx = 0. O

Corollary 1.19. Consider a stable continuous time Markov chain X : Q) — X®+. Then for all states x,y € X and
duration u € Ry,

P({Tp41>u,Zpy1 =y} |[{Xo=X0,-..,Zn = x,50 <50,...,5n <Sn}) = pxye” "'



Proof. The history of the process until stopping time S, is givenby Fs, = (So, (Zo, T1), ..., (Zn-1,Tn), Zy).
Therefore H = {Sy <so} N, {Z;_1 = x;_1,S; < s;} € Fs, and {Z, = x} N H € Fs,. Using strong Markov
property and time-homogeneity of the continuous time Markov chain X, we have

P{Ty1>u,Zys1 =y} |{Zy=x}NH)=PA{S1>u,21 =y}.
The result follows from the previous Lemma[I.16] O

Corollary 1.20. For a stable continuous time Markov chain, the jump transition probabilities (pxy : x,y € X)
and holding times T : QO — RY are independent. The embedded jump process Z : Q — X2+ is a homogeneous

Markov chain with countable state space X. The holding time sequence T : Q — RY is independent and T, is
distributed exponentially with rate vz | for each n € IN.

Example 1.21 (Poisson process). A Poisson counting process N : {2 — ZE* with homogeneous rate
A is a continuous time Markov chain with the countable state space is Z and uniform transition
rate v, = A for each state n € Z . It follows from the memoryless property of exponential random

variables, that
Fu(t) = P({Yu >t} | {Ny=n}) =P{S; >t} =e M.

Further, the embedded Markov chain or the jump process is given by the initial state Nyp = 0 and the
transition probability matrix P = (pu,m : n,m € Z ) where py, 41 =1 and p,m =0 for m # n + 1.
This follows from the definition of Ty, since pym = P({N; =m} | {No=n}) = Ly 1}

A Exponential random variables

Lemma A.1. Let X be an exponential random variable, and S be any positive random variable, independent of
X. Then, forall u >0
P{X>S+u}|[{X>S})=P{X>u}.

Proof. Let the distribution of S be F and X be memoryless with rate pi. From the definition of conditional
probability, we can write

P({X>S+u}|{X>S})—Im

Since a probability is an expectation of an indicator, we can write for all u > 0,
P{X>S+u} =E[E[Lxss1.) | 0(S)]] = E[e ™) = ME[e).

It follows that P{X > S} = Ee™#S and since P {X > u} = e~#* for all u € R, the result follows. 0O

B Coupling

For a regular and stable continuous time Markov chain X : () — xR+ we denote the embedded Markov
chain by Z : Q — X%+ and the independent inter-jump time sequence by T : Q — R where T, is an
exponential random variable with rate vz | for all n € IN. From the regularity and stability of process
X, we have
0 <v < inf vy <supvy <y < .
xeX xeX

Consider an i.i.d. uniform random sequence U : Q — [0,1]N and define three dependent random se-
quences T, T,T:Q— IRHE such that for each n € IN, we have

1

Uanl

_ 1 1
T, 2 f%logun, T, £ fgloglln, T, 2 — log U,,.

We observe that T and T are i.i.d. exponential random sequences with rates v and v respectively. Fur-
ther, T is an independent exponential random sequence with the rate vz , for T,. In addition, by

construction, we have T,, < T, < T, for each n € IN.
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