

Lecture-19: Embedded Markov chain and sojourn times

1 State Evolution

For a time homogeneous Markov process $X : \Omega \rightarrow \mathcal{X}_+^{\mathbb{R}}$ on countable state space $\mathcal{X} \subseteq \mathbb{R}$ with sample paths that are right continuous with left limits (rcll), we wish to characterize the transition probability kernel $P : \mathbb{R}_+ \rightarrow \mathcal{M}(\mathcal{X})^{\mathcal{X}}$, where $P_{xy}(t) \triangleq P(\{X_{s+t} = y\} \mid \{X_s = x\})$ for all $s, t \in \mathbb{R}_+$. To this end, we define the sojourn time in any state, the jump times, and the jump transition probabilities.

1.1 Jump time and embedded chain

Consider a right continuous countable state stochastic process $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ and denote its natural filtration by $\mathcal{F}_\bullet \triangleq (\mathcal{F}_t : t \in \mathbb{R}_+)$ where $\mathcal{F}_t \triangleq \sigma(X_s, s \leq t)$ for all $t \in \mathbb{R}_+$.

Definition 1.1 (Jump instants). Let $S_0 \triangleq 0$, then the n th *jump instant* of X is defined inductively as

$$S_n \triangleq \inf \{t > S_{n-1} : X_t \neq X_{S_{n-1}}\}.$$

The non decreasing random sequence $S : \Omega \rightarrow \mathbb{R}_+^{\mathbb{N}}$ is called the *jump instants sequence*.

Definition 1.2 (Embedded chain). Sampling the rcll process X at the jump instants in S , we derive the associated *embedded jump chain* $Z : \Omega \rightarrow \mathcal{X}^{\mathbb{N}}$, such that the state of the process X at the n th jump instant S_n is denoted by $Z_n \triangleq X_{S_n}$, for each $n \in \mathbb{N}$.

Definition 1.3 (Sojourn times and jump counting process). By definition, the process X remains in state Z_{n-1} during the interval $[S_{n-1}, S_n)$, and the *sojourn time* for the process X in the state Z_{n-1} is defined as $T_n \triangleq S_n - S_{n-1}$. The counting process associated with jump instants sequence S is denoted by $N : \Omega \rightarrow \mathbb{Z}_+^{\mathbb{R}_+}$, where the number of jumps for process X in duration $(0, t]$ is denoted by

$$N_t \triangleq \sum_{n \in \mathbb{N}} \mathbb{1}_{\{S_n \leq t\}}.$$

Lemma 1.4. Consider a rcll countable state stochastic process $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ with its natural filtration \mathcal{F}_\bullet . Each term of the associated jump time sequence $S : \Omega \rightarrow \mathbb{R}_+^{\mathbb{N}}$ is adapted to \mathcal{F}_\bullet .

Proof. Since X is rcll, it is progressively measurable, and hence the event $\{S_n \leq t\} \in \mathcal{F}_t$. □

Remark 1. From the definition of jump instants, it follows that the history until time t is

$$\mathcal{F}_t = \sigma(S_0, (Z_0, T_1), (Z_1, T_2), \dots, (Z_{N_t}, A_t)).$$

We can verify that $\mathcal{F}_{S_n} = \sigma(S_0, (Z_0, T_1), \dots, (Z_{n-1}, T_n), Z_n)$.

Definition 1.5 (Excess time). From the definition of excess time as the time until next transition, we can write the excess time for rcll process X in state Z_{N_t} at time $t \in \mathbb{R}_+$ as

$$Y_t \triangleq \inf \{s > 0 : X_{t+s} \neq X_t\}.$$

Remark 2. We observe that Y_t is the excess remaining time the process spends in state X_t at instant t . That is, $X_{t+Y_t} \neq X_t$, and further $T_n = Y_{S_{n-1}}$ for each $n \in \mathbb{N}$.

1.2 Holding time in a state for continuous time Markov chains

Remark 3. For a time homogeneous continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$, the distribution of excess time Y_t conditioned on the current state X_t , doesn't depend on time t . Hence, we can define the following conditional complementary distribution of excess time as

$$\bar{F}_x(u) \triangleq P(\{Y_t > u\} \mid \{X_t = x\}) = P(\{Y_0 > u\} \mid \{X_0 = x\}) = P_x\{Y_0 > u\}.$$

Lemma 1.6. For a homogeneous continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$, there exists a positive sequence $\nu \in \mathbb{R}_+^\mathcal{X}$, such that $\bar{F}_x(u) = e^{-u\nu_x}$ for each state $x \in \mathcal{X}$ and time $t \in \mathbb{R}_+$.

Proof. We fix a state $x \in \mathcal{X}$ and time $t \in \mathbb{R}_+$, and observe that the function $\bar{F}_x \in [0, 1]$ is non negative, non increasing, and right continuous in u . Using the Markov property and time homogeneity of process X , we can show that \bar{F}_x satisfies the semigroup property. In particular,

$$\bar{F}_x(u + v) = P(\{Y_t > u + v\} \mid \{X_t = x\}) = P(\{Y_t > u, Y_{t+u} > v\} \mid \{X_t = x\}) = \bar{F}_x(u)\bar{F}_x(v).$$

The only continuous non increasing function $\bar{F}_x \in [0, 1]^{\mathbb{R}_+}$ that satisfies semigroup property is an exponential function with a negative exponent. \square

Example 1.7 (Poisson process). Consider the Poisson counting process $N : \Omega \rightarrow \mathbb{Z}_+^{\mathbb{R}_+}$ with homogeneous rate λ . Using the stationary independent increment property, we have for all $u \geq 0$

$$\bar{F}_i(u) = P(\{Y_t > u\} \mid \{N_t = i\}) = P(\{N_{t+u} = i\} \mid \{N_t = i\}) = P\{N_{t+u} - N_t = 0\} = P\{Y_t > u\} = e^{-\lambda u}.$$

Lemma 1.8. Consider a homogeneous continuous time Markov chain X with jump instant sequence $S : \Omega \rightarrow \mathbb{R}_+^\mathbb{N}$. If S_{n-1} is almost surely finite, then sojourn time T_n is a continuous memoryless random variable, and the sequence of sojourn times $(T_j : j \geq n)$ is independent of the past $\mathcal{F}_{S_{n-1}}$ conditioned on state Z_{n-1} .

Proof. We observe that the sojourn time T_n equals the excess time $Y_{S_{n-1}}$, where the process remains in state $Z_{n-1} = X_{S_{n-1}}$ in the duration $S_{n-1} + [0, T_n]$. Using the strong Markov property at stopping time S_{n-1} , we can write the conditional complementary distribution of T_n given any historical event $H \in \mathcal{F}_{S_{n-1}}$ and $u \geq 0$ as

$$P(\{T_n > u\} \mid \{Z_{n-1} = x\} \cap H) = P(\{Y_{S_{n-1}} > u\} \mid \{X_{S_{n-1}} = x\} \cap H) = \bar{F}_x(u).$$

\square

Corollary 1.9. If $Z_{n-1} = x$, then the holding time T_n is an exponential random variable with rate ν_x .

Definition 1.10 (Transition rate). For a time homogeneous continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$, the random holding time in a state $x \in \mathcal{X}$ is exponentially distributed with the rate called the *transition rate* out of state x denoted by ν_x .

Definition 1.11 (Pure jump). Consider a time homogeneous continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$. A state $x \in \mathcal{X}$ is called *instantaneous* if $\nu_x = \infty$, *stable* if $\nu_x \in (0, \infty)$, and *absorbing* if $\nu_x = 0$. If X has no instantaneous states, then it is called *pure jump*.

Remark 4. Transition rate out of a state x is the inverse of mean holding time in this state x , i.e. $\nu_x = 1/\mathbb{E}_x T_1$. Therefore, the mean holding time $\mathbb{E}_x T_1$ in state x is ∞ in an absorbing state, zero in an instantaneous state, and almost surely finite and non-zero in a stable state.

Definition 1.12. A pure jump continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ with

- (i) all stable states and $\inf_{x \in \mathcal{X}} \nu_x \geq \nu > 0$ is called *stable*, and
- (ii) $\sup_{x \in \mathcal{X}} \nu_x \leq \nu < \infty$ is called *regular*.

Example 1.13 (Non-regular continuous time Markov chain). For the countable state space \mathbb{N} , consider the probability transition matrix P such that $p_{n,n+1} = 1$ and the exponential holding times with rate $\nu_n = n^2$ for each state $n \in \mathbb{N}$. Clearly, $\sup_{n \in \mathbb{N}} \nu_n = \infty$, and hence it is not regular.

Remark 5. Pure jump continuous time Markov chain with finite stable states are stable and regular. We will focus on pure jump homogeneous continuous time Markov chain over countably infinite states, that are stable and regular.

1.3 Jump instants and embedded chain for continuous time Markov chains

Proposition 1.14. *For a stable continuous time Markov chain X , the jump instants are stopping times.*

Proof. For a stable continuous time Markov chain X , we let $0 < \nu \leq \inf_{x \in \mathcal{X}} \nu_x$. Then, by coupling in Appendix B, we have a sequence of *i.i.d.* random variables $\bar{T} : \Omega \rightarrow \mathbb{R}_+^{\mathbb{N}}$, such that $T_n \leq \bar{T}_n$ almost surely and $\mathbb{E}\bar{T}_n = 1/\nu$ for each $n \in \mathbb{N}$. Defining $\bar{S}_n \triangleq \sum_{i=1}^n \bar{T}_i$, it follows that $S_n \leq \bar{S}_n$ for each $n \in \mathbb{N}$. Since \bar{S}_n is sum of n almost surely finite independent random variables, it is finite almost surely. It follows that S_n is finite almost surely. \square

Proposition 1.15. *For a regular continuous time Markov chain X , the number of jumps N_t is almost surely finite in duration $(0, t]$ for all finite times $t \in \mathbb{R}_+$.*

Proof. Let X be a regular continuous time Markov chain and $\sup_{x \in \mathcal{X}} \nu_x \leq \nu < \infty$. Then, by coupling in Appendix B, we have a sequence of *i.i.d.* random variables $\underline{T} : \Omega \rightarrow \mathbb{R}_+^{\mathbb{N}}$, such that $T_n \geq \underline{T}_n$ almost surely and $\mathbb{E}\underline{T}_n = 1/\nu$ for each $n \in \mathbb{N}$. Defining $\underline{S}_n \triangleq \sum_{i=1}^n \underline{T}_i$ and $\underline{N}_t \triangleq \sum_{n \in \mathbb{N}} \mathbb{1}_{\{\underline{S}_n \leq t\}}$, it follows that $S_n \geq \underline{S}_n$ for each $n \in \mathbb{N}$ and $N_t \leq \underline{N}_t$ for all $t \in \mathbb{R}_+$. Since \underline{N} is a Poisson counting process with finite rate ν , it is almost surely finite at all $t \in \mathbb{R}_+$ and the result follows. \square

Remark 6. From the strong Markov property and the time-homogeneity of the continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ and definition of embedded chain, we see that for any state $x, y \in \mathcal{X}$

$$P(\{Z_n = y\} \mid \{Z_{n-1} = x\}) = P_{xy}(S_{n-1}, S_n) = P_{xy}(0, T_n).$$

Remark 7. From the law of total probability, it follows that for any rcll stochastic process $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ with countable state space \mathcal{X} , the sum of jump transition probabilities $\sum_{y \neq x} P_{xy}(S_{n-1}, S_n) = 1$ for all states $Z_{n-1} = x \in \mathcal{X}$.

Lemma 1.16. *For a stable continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$, the jump probability from state Z_{n-1} to state Z_n depends solely on Z_{n-1} and is independent of the the past and the sojourn time T_n .*

Proof. Since X is stable, each jump instant is a stopping time. Fix states $x, y \in \mathcal{X}$ and a historical event $H \in \mathcal{F}_{S_{n-1}}$. From the definition of conditional probability, we write

$$P(\{T_n > u, Z_n = y\} \mid \{Z_{n-1} = x\} \cap H) = P(\{X_{S_n} = y\} \mid \{T_n > u, X_{S_{n-1}} = x\} \cap H)P(\{T_n > u\} \mid \{Z_{n-1} = x\} \cap H).$$

From the time homogeneity and strong Markov property applied to stopping time S_{n-1} , we get $P(\{T_n > u\} \mid \{Z_{n-1} = x\} \cap H) = \bar{F}_x(u)$. We further observe that $\{T_n > u, X_{S_{n-1}} = x\} \cap H = \{X_t = x, t \in S_{n-1} + [0, u]\} \cap H \in \mathcal{F}_{S_{n-1}+u}$. From the definition of excess time, we can write $S_n = S_{n-1} + u + Y_{S_{n-1}+u}$ for any $u \in [0, T_n]$. Again, applying the time homogeneity and Markov property of the continuous time Markov chain X , and the memoryless property of excess time Y , we obtain

$$P(\{X_{S_n} = y\} \mid \{T_n > u, X_{S_{n-1}} = x\} \cap H) = P(\{X_{S_{n-1}+u+Y_{S_{n-1}+u}} = y\} \mid \{X_{S_{n-1}+u} = x\}) = P_{xy}(0, Y_0).$$

This implies that sojourn time distribution and jump transision probabilities are independent. \square

Definition 1.17. The jump process Z is also sometimes referred to as the *embedded discrete time Markov chain* of the pure jump continuous time Markov chain X . The corresponding *jump transition probabilities* are defined for each state transition pair $x, y \in \mathcal{X}$ as

$$p_{xy} \triangleq P_{xy}(S_{n-1}, S_n) = P(\{X_{S_n} = y\} \mid \{X_{S_{n-1}} = x\}).$$

Remark 8. If $\nu_x = 0$, then for any $u \geq 0$, we have $P(\{Y_0 > u\} \mid \{X_0 = x\}) = 1$, and hence $S_1 = \infty$ almost surely whenever $X_0 = x$. By convention, we set $p_{xx} = 1$ and $p_{xy} = 0$ for all states $y \neq x$.

Corollary 1.18. *The transition probability matrix $p \triangleq (p_{xy} : x, y \in \mathcal{X})$ for embedded Markov chain Z is stochastic, and if $\nu_x > 0$ then $p_{xx} = 0$.*

Proof. Recall $p_{xy} = P_{xy}(S_1)$. If $\nu_x > 0$, then $\lim_{u \rightarrow \infty} P(\{Y_0 > u\} \mid \{X_0 = x\}) = 0$, and hence S_1 is finite almost surely. By definition $X_{S_1} \neq X_0 = x$, and hence $p_{xx} = 0$. \square

Corollary 1.19. *Consider a stable continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$. Then for all states $x, y \in \mathcal{X}$ and duration $u \in \mathbb{R}_+$,*

$$P(\{T_{n+1} > u, Z_{n+1} = y\} \mid \{X_0 = x_0, \dots, Z_n = x, S_0 \leq s_0, \dots, S_n \leq s_n\}) = p_{xy}e^{-u\nu_x}.$$

Proof. The history of the process until stopping time S_n is given by $\mathcal{F}_{S_n} = \sigma(S_0, (Z_0, T_1), \dots, (Z_{n-1}, T_n), Z_n)$. Therefore $H \triangleq \{S_0 \leq s_0\} \cap_{i=1}^n \{Z_{i-1} = x_{i-1}, S_i \leq s_i\} \in \mathcal{F}_{S_n}$ and $\{Z_n = x\} \cap H \in \mathcal{F}_{S_n}$. Using strong Markov property and time-homogeneity of the continuous time Markov chain X , we have

$$P(\{T_{n+1} > u, Z_{n+1} = y\} \mid \{Z_n = x\} \cap H) = P_x \{S_1 > u, Z_1 = y\}.$$

The result follows from the previous Lemma 1.16. \square

Corollary 1.20. *For a stable continuous time Markov chain, the jump transition probabilities $(p_{xy} : x, y \in \mathcal{X})$ and holding times $T : \Omega \rightarrow \mathbb{R}_+^{\mathbb{N}}$ are independent. The embedded jump process $Z : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$ is a homogeneous Markov chain with countable state space \mathcal{X} . The holding time sequence $T : \Omega \rightarrow \mathbb{R}_+^{\mathbb{N}}$ is independent and T_n is distributed exponentially with rate $\nu_{Z_{n-1}}$ for each $n \in \mathbb{N}$.*

Example 1.21 (Poisson process). A Poisson counting process $N : \Omega \rightarrow \mathbb{Z}_+^{\mathbb{R}_+}$ with homogeneous rate λ is a continuous time Markov chain with the countable state space is \mathbb{Z}_+ and uniform transition rate $\nu_n = \lambda$ for each state $n \in \mathbb{Z}_+$. It follows from the memoryless property of exponential random variables, that

$$\bar{F}_n(t) = P(\{Y_u > t\} \mid \{N_u = n\}) = P\{S_1 > t\} = e^{-\lambda t}.$$

Further, the embedded Markov chain or the jump process is given by the initial state $N_0 = 0$ and the transition probability matrix $P = (p_{n,m} : n, m \in \mathbb{Z}_+)$ where $p_{n,n+1} = 1$ and $p_{n,m} = 0$ for $m \neq n+1$. This follows from the definition of T_1 , since $p_{n,m} = P(\{N_{T_1} = m\} \mid \{N_0 = n\}) = \mathbb{1}_{\{m=n+1\}}$.

A Exponential random variables

Lemma A.1. *Let X be an exponential random variable, and S be any positive random variable, independent of X . Then, for all $u \geq 0$*

$$P(\{X > S + u\} \mid \{X > S\}) = P\{X > u\}.$$

Proof. Let the distribution of S be F and X be memoryless with rate μ . From the definition of conditional probability, we can write

$$P(\{X > S + u\} \mid \{X > S\}) = \frac{P\{X > S + u\}}{P\{X > S\}}.$$

Since a probability is an expectation of an indicator, we can write for all $u \geq 0$,

$$P\{X > S + u\} = \mathbb{E}[\mathbb{E}[\mathbb{1}_{\{X > S+u\}} \mid \sigma(S)]] = \mathbb{E}[e^{-\mu(S+u)}] = e^{-\mu u} \mathbb{E}[e^{-\mu S}].$$

It follows that $P\{X > S\} = \mathbb{E}e^{-\mu S}$ and since $P\{X > u\} = e^{-\mu u}$ for all $u \in \mathbb{R}_+$, the result follows. \square

B Coupling

For a regular and stable continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$, we denote the embedded Markov chain by $Z : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$ and the independent inter-jump time sequence by $T : \Omega \rightarrow \mathbb{R}_+^{\mathbb{N}}$ where T_n is an exponential random variable with rate $\nu_{Z_{n-1}}$ for all $n \in \mathbb{N}$. From the regularity and stability of process X , we have

$$0 < \bar{\nu} \leq \inf_{x \in \mathcal{X}} \nu_x \leq \sup_{x \in \mathcal{X}} \nu_x \leq \underline{\nu} < \infty.$$

Consider an *i.i.d.* uniform random sequence $U : \Omega \rightarrow [0, 1]^{\mathbb{N}}$ and define three dependent random sequences $\underline{T}, T, \bar{T} : \Omega \rightarrow \mathbb{R}_+^{\mathbb{N}}$ such that for each $n \in \mathbb{N}$, we have

$$\bar{T}_n \triangleq -\frac{1}{\bar{\nu}} \log U_n, \quad \underline{T}_n \triangleq -\frac{1}{\underline{\nu}} \log U_n, \quad T_n \triangleq -\frac{1}{\nu_{Z_{n-1}}} \log U_n.$$

We observe that \underline{T} and \bar{T} are *i.i.d.* exponential random sequences with rates $\underline{\nu}$ and $\bar{\nu}$ respectively. Further, T is an independent exponential random sequence with the rate $\nu_{Z_{n-1}}$ for T_n . In addition, by construction, we have $\underline{T}_n \leq T_n \leq \bar{T}_n$ for each $n \in \mathbb{N}$.