
Lecture-20: Uniformization of Markov Processes

1 Alternative construction of continuous time Markov chain

Definition 1.1. Let Z : Ω → XN be a discrete time Markov chain with a countable state space X, and the
corresponding transition probability matrix p ∈M(X)X. Further, we let ν ∈ RX

+ be the set of transition
rates such that pxx = 0 if νx > 0 . Let S0 ≜ 0 and T : Ω →RN

+ be a random sequence, where Tn is a random
variable distributed exponentially with rate νZn−1 and independent of (S0, (Z0, T1), . . . , (Zn−2, Tn−1)).
We define the nth transition instant Sn ≜ ∑n

i=1 Ti. For any initial state Z0 ∈ X, we can define a right
continuous with left limits piece-wise constant stochastic process X : Ω → XR+ for each t ∈ R+ as

Xt ≜ ∑
n∈N

Zn−11[Sn−1,Sn)(t).

We define the counting process N : Ω → Z
R+
+ such that the number of transitions of process X in the

duration (0, t] for any time t ∈ R+ is denoted by Nt ≜ ∑n∈N1{Sn⩽t}. The history of the process until
time t is denoted by Ft ≜ σ(S0, (Z0, T1), . . . , (ZNt , At)).

Remark 1. From the definition, any sample path of the process is right-continuous with left limits, and
has countable state space X.

Remark 2. A necessary condition for the process X to be defined on index set R+, is that for each
t ∈ R+, there exists an n such that Sn ⩽ t < Sn+1. That is, P{Nt < ∞} = P{S∞ > t} = 1 for all t ∈ R+.
This is equivalent to P{S∞ = ∞} = 1, or P{S∞ < ∞} = 0. Let ω ∈ {S∞ < ∞}, then we can’t define the
process for t > S∞. If the process X is regular, i.e. supx νx < ∞, then we can show that P{Nt < ∞} =
P{S∞ > t} = 1 for all t ∈ R+.

Lemma 1.2. Consider the process X defined in Definition 1.1 and (s, t] a non empty interval of R+. Conditioned
on Xs, the increment Nt − Ns of the counting process N is independent of Fs, and depends only on the duration
t − s of the increment. That is, for a historical event H ∈ Fs and state x ∈ X,

P({Nt − Ns = k} | {Xs = x} ∩ H) = Px({Nt−s = k}).

Proof. From the independence of inter-transition times, we know that TNs+j is independent of the his-
tory Fs for j ⩾ 2 conditioned on the process state Xs = x. Hence for any historical event H ∈ Fs and state
x ∈ X, we can write the conditional probability of increment Nt − Ns for t > s, as

P({Nt − Ns = k} | {Xs = x} ∩ H) = P

({
Ys +

Ns+k

∑
i=Ns+2

Ti ⩽ t − s < Ys +
Ns+k+1

∑
i=Ns+2

Ti

}
| {Xs = x} ∩ H

)

= P

({
Ys +

Ns+k

∑
i=Ns+2

Ti ⩽ t − s < Ys +
Ns+k+1

∑
i=Ns+2

Ti

}
| {Xs = x}

)
.

Further, from the memoryless property of an exponential random variable, the excess time Ys distribu-
tion conditioned on Fs is exponential with rate νZNs

, i.e. identically distributed to TNs+1. Therefore, the
conditional distribution of (Ys, TNs+2, . . . , TNs+k) given the current process state Xs = x, is identical to
that of the conditional distribution of inter-transition times (T1, T2, . . . , Tk) given initial state X0 = x. It
follows that

P

({
Ys +

Ns+k

∑
i=Ns+2

Ti ⩽ t − s < Ys +
Ns+k+1

∑
i=Ns+2

Ti

}
| {Xs = x}

)
= Px {Nt−s = k} .
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Proposition 1.3. The stochastic process X : Ω → XR+ constructed in Definition 1.1 is a time-homogeneous
continuous time Markov chain.

Proof. For states x,y ∈ X, we can write the probability of process being in state y, conditioned on any
historical events H ∈ Fs as

P({Xt = y} | {Xs = x} ∩ H) = ∑
k∈Z+

P({Xt = y, Nt − Ns = k} | {Xs = x} ∩ H).

From the construction of process X in Definition 1.1, the conditional independence and time homo-
geneity of counting process from Lemma 1.2, and Markov property of Z, we can write the conditional
probability for each k ∈ N, as

P({Xt = y, Nt − Ns = k} | {Xs = x}∩ H) = P(
{

ZNs+k = y
}
| {ZNs = x})Px {Nt−s = k}= Px {Xt−s = y, Nt−s = k} .

Thus, we have shown the time homogeneity and Markov property for the process X.

Theorem 1.4. A stochastic process X : Ω → XR+ defined on countable state space X ⊆ R and having right
continuous sample paths with left limits, is a continuous time Markov chain iff for each transition n ∈ N

(a) sojourn time Tn is independent and exponentially distributed with rate νx where XSn−1 = x, and
(b) jump transition probabilities pxy = Pxy(Sn−1,Sn) are independent of Sn and ∑y ̸=x pxy = 1.

1.1 Generator Matrix

Theorem 1.5. For a regular continuous time Markov chain X : Ω → XR+ , the generator matrix exists and is
defined for all x,y ∈ X in terms of transition rates ν ∈ RX

+ and jump transition matrix p ∈M(X)X, as

Qxx = −νx, Qxy = νx pxy, y ̸= x.

Proof. Recall that limt↓0 P(t) = I and Q ≜ dP(t)
dt

∣∣∣
t=0

. Consider a fixed time t ∈ R+ and states x,y ∈ X.

For a regular continuous time Markov chain X : Ω → XR+ , we have ∪n∈Z+ {Nt = n} almost surely.
Therefore, we can expand the (x,y)th entry of transition matrix in terms of disjoint events {Nt = n}
as Pxy(t) = Px {Xt = y} = ∑n∈Z+

Px {Xt = y, Nt = n} . We can write the upper and lower bound the
transition probability Pxy(t) as

1

∑
n=0

Px {Xt = y, Nt = n}⩽ Pxy(t)⩽
1

∑
n=0

Px {Xt = y, Nt = n}+ Px {Nt ⩾ 2} .

Since Ixy = 1{x ̸=y}, we can write the probability of zero transition in time (0, t] as Px {Xt = y, Nt = 0} =
Ixye−νxt. To compute the probability of single transition in time (0, t], we apply the tower property of
conditional expectation, to write

Px {Xt = y, Nt = 1} = 1{x ̸=y}ExE[1{Xt=y,T2>t−S1,S1⩽t}|FS1 ] = (1 − Ixy)pxyEx1{S1⩽t}e−νy(t−S1).

Since {Nt ⩾ 2} is of order o(t) for small t, we can write

Pxy(t)− Ixy

t
= −νx Ixy

(
1 − e−νxt

νxt

)
+ νx pxy

(e−νyt − e−νxt)

(νx − νy)t
(1 − Ixy) + o(t).

Taking limit as t ↓ 0, we get the result.

Corollary 1.6. For each state x ∈ X, the generator matrix Q ∈ RX×X for a pure jump continuous time Markov
chain X, satisfies

0 ⩽−Qxx < ∞, 0 ⩽ Qxy < ∞, y ∈ X \ {x} ∑
y∈X

Qxy = 0.

Remark 3. For a homogeneous discrete time Markov chain with one-step transition probability matrix
p ∈ M(X)X, we can write the n-step transition probability matrix p(n) = pn. That is, for any given
stochastic matrix p, we can construct a discrete time Marko chain. We can generalize this notion to
homogeneous continuous time Markov chains as well. Given a matrix Q ∈ RX×X that satisfies the
properties of a generator matrix given in Corollary 1.6, we can construct a homogeneous continuous
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time Markov chain X : Ω → XR+ by finding its transition kernel P : R+ →M(X)X, by defining P(t)≜
etQ for all t ∈ R+. We observe that P(1) = eQ and we have P(t) = P(1)t for all t ∈ R+. We need to show
that such a defined function is indeed a probability transition kernel. We will first show that such a
function P satisfies some of the properties of the probability transition kernel, and then show that P(t)
is transition matrix at all times t ∈ R+.

Theorem 1.7. Let Q ∈ RX×X be a matrix that satisfies the properties of generator matrix given in Corollary 1.6.
We define a function P : R+ →M(X)X by P(t)≜ etQ for all t ∈ R+. Then the function P satisfies the following
properties.
(a) P has the semigroup property, i.e. P(s + t) = P(s)P(t) for all s, t ∈ R+.
(b) P is the unique solution to the forward equation, dP(t)

dt = P(t)Q with initial conditon P(0) = I.

(c) P is the unique solution to the backward equation, dP(t)
dt = QP(t) with initial condition P(0) = I.

(d) For all k ∈ N, we have dk P(t)
dk(t)

∣∣∣
t=0

= Qk.

Proof. Given the definition of P and properties of Q, one can easily check these properties.

Theorem 1.8. A finite matrix Q ∈ RX×X satisfies the properties of a generator matrix given in Corollary 1.6 iff
the function P : R+ →M(X)X defined by P(t)≜ etQ is a stochastic matrix for all t ∈ R+.

Proof. Sufficiency has already been seen before, and hence we will focus only on necessity. Accordingly,
we assume that Q ∈ RX×X satisfies the properties of a generator matrix given in Corollary 1.6, then we
will show that P(t) = etQ is a stochastic matrix. Recall that Q1T = 0 for all ones column vector 1T , and
hence Qn1T = 0 for all n ∈ N. Expanding P(t) in terms of expression for matrix exponentiation, we
write P(t) = I + ∑k∈N

tn

n! Qn. This implies that P(t)1T = 1T .

1.2 Transition graph

The weighted directed transition graph (V, E,w) consists of vertex set V = X and the edges being

E =
{
(x,y) ∈ X×X : Qxy > 0,y ̸= x

}
.

The weights w : E → R+ of the directed edges are given by wxy = Qxy = νx pxy.

2 Uniformization

Consider a homogeneous continuous time Markov chain X : Ω → XR+ in which the mean time spent in
a state is identical for all states, i.e. νx = ν uniformly for all states x ∈ X. Since the random amount of
time spent in each state is i.i.d. with common exponential distribution of rate ν, the associated counting
process N : Ω → Z

R+
+ is a Poisson process with rate ν. In this case, we can explicitly characterize the

probability transition kernel P : R+ →M(X)X for this continuous time Markov chain X in terms of the
jump transition probability matrix p ∈ M(X)X and uniform transition rate ν. To this end, we use the
law of total probability over countable partitions ({Nt = n} : n ∈ Z+) to get

Pxy(t) = ∑
n∈Z+

Px {N(t) = n}P({Xt = y} | {X0 = x, Nt = n}) = ∑
n∈Z+

p(n)xy e−νt (νt)n

n!
.

This equation could also have been derived by observing that Q = −ν(I − p) and hence using the
exponentiation of matrix, we can write

P(t) = e−νt(I−p) = e−νteνtp = e−νt ∑
n∈Z+

pn (νt)n

n!
. (1)

Eq. (1) gives a closed form expression for P(t) and also suggests an approximate computation by an
appropriate partial sum. However, its application is limited as the transition rates for all states are all
assumed to be equal. It turns out that any regular Markov chain can be transformed in this form by
allowing hypothetical transitions from a state to itself.
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2.1 Uniformization step

Consider a regular continuous time Markov chain X : Ω → XR+ with bounded transition rates, with
finite rate ν such that νx ⩽ ν for all states x ∈ X. Since from each state x ∈ X, the Markov chain leaves at
rate νx, we could equivalently assume that the transitions occur at a rate ν but only νx

ν are real transitions
and the remaining transitions are fictitious self-transitions.

Construction 2.1 (uniformization). For any regular continuous time Markov chain X : Ω → XR+ with
transition rates ν ∈ RX

+ and jump probability transition matrix p ∈ M(X)X, we can find a finite rate
ν ⩾ supx∈X νx. We construct a continuous time Markov chain Y : Ω → XR+ with uniform transition
rates ν for all states x ∈ X, and jump probability transition matrix q ∈ M(X)X defined for all states
x,y ∈ X, as

qxy =
νx

ν
pxy1{y ̸=x} +

(
1 − νx

ν

)
1{y=x}.

The process Y is called the uniformized version of process X. This technique of uniformizing the rate
in which a transition occurs from each state to any other state by introducing self transitions is called
uniformization.

Theorem 2.2. A regular continuous time Markov chain X and its uniformized version Y are identical in distri-
bution.

Proof. We consider the i.i.d. sequence of inter transition times T : Ω → RN
+ with the common exponential

distribution of rate ν for the Markov process Y. Assuming the initial state x for the Markov process Y, we
define a random sequence of indicators ξ : Ω →{0,1}N, defined as ξn ≜ 1{YSn ̸=x} for each n ∈ N. From

the definition of uniformized process Y, we know that Px {ξ1 = ξ2 = · · · = ξn = 0} = qn
xx = (1 − νx

ν )
n,

and ξ is an i.i.d. sequence. We can define the number of transitions to exit state x, as a stopping time

τ ≜ inf{n ∈ N : ξn = 1} .

Since ξ is i.i.d. Bernoulli, τ is a geometric random variable with success probability 1 − qxx = νx
ν . To

show that the two Markov processes Y and X have identical distribution, it suffices to show that
(a) U ≜ Sτ = ∑τ

n=1 Tn is distributed exponentially with rate νx, and
(b) P({YU = y} | {Y0 = x}) = pxy.
To see (a), we observe that random sequence T and random variable τ are independent, and hence we
can compute the moment generating function of U as

MU(θ) = E

[
E[

τ

∏
n=1

e−θTn | τ]

]
= EMτ

T1
(θ) = ∑

n∈N

(
ν

ν + θ

)n
qn−1

xx (1 − qxx) =
νx

νx + θ
.

To see (b), from the Markov property of process Y and its embedded jump transition matrix q, we
observe that

Px {YU = y}= ∑
n∈N

Px {YU = y,τ = n}= ∑
n∈N

Px
{

YS1 = · · · = YSn−1 = x,YSn = y
}
= ∑

n∈N

qxyqn−1
xx =

qxy

1 − qxx
= pxy.

Remark 4. Any regular continuous time Markov chain X : Ω → XR+ can be thought of as being in a
process that spends a random time in state x ∈ X distributed exponentially with rate ν, and then makes
a transition to state y ∈ X with probability qxy. Then, one can write the probability transition kernel as

Pxy(t) =
∞

∑
n=0

q(n)xy e−νt (νt)n

n!
.
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