

Lecture-21: Invariant Distribution of Markov Processes

1 Class properties

Definition 1.1. For a time homogeneous continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$, we say a state y is *reachable* from state x if $P_{xy}(t) > 0$ for some $t > 0$, and we denote $x \rightarrow y$. If two states $x, y \in \mathcal{X}$ are reachable from each other, we say that they *communicate* and denote it by $x \leftrightarrow y$.

Lemma 1.2. *Communication is an equivalence relation.*

Definition 1.3. Communication equivalence relation partitions the state space \mathcal{X} into equivalence classes called *communicating classes*. A continuous time Markov chain with a single communicating class is called *irreducible*.

Theorem 1.4. *A pure jump continuous time Markov chain with all stable states and its embedded discrete time Markov chain have the same communicating classes.*

Proof. It suffices to show that $x \rightarrow y$ for the regular Markov process iff $x \rightarrow y$ in the embedded chain. If $x \rightarrow y$ for the embedded chain, then there exists a path $x = x_0, x_1, \dots, x_n = y$ such that $p_{x_0 x_1} p_{x_1 x_2} \dots p_{x_{n-1} x_n} > 0$ and $0 < \nu_{x_0} \nu_{x_1} \dots \nu_{x_{n-1}}$. It follows that S_n is a stopping time and sum of n independent exponential random variables with rates $\nu_{x_0}, \dots, \nu_{x_{n-1}}$, and we can write

$$P_{xy}(t) \geq P \{ X_0 = x_0, X_{S_1} = x_1, \dots, X_{S_n} = x_n, N_t = n \} = \prod_{k=0}^{n-1} p_{x_k x_{k+1}} \mathbb{E}[\mathbb{1}_{\{N_t=n\}} \mid \cap_{i=0}^n \{Z_i = x_i\}] > 0.$$

Conversely, if the states y is not reachable from state x in embedded chain, then it won't be reachable in the regular continuous time Markov chain. \square

Corollary 1.5. *A pure jump continuous time Markov chain with all stable states is irreducible iff its embedded discrete time Markov chain is irreducible.*

Remark 1. There is no notion of periodicity in continuous time Markov chains since there is no fundamental time-step that can be used as a reference to define such a notion. In fact, for any state $x \in \mathcal{X}$ of a non-instantaneous homogeneous continuous time Markov chain we have $P_{xx}(t) > e^{-\nu_x t} > 0$ for all $t \geq 0$.

1.1 Recurrence and transience

Consider a continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ and its embedded discrete time Markov chain $Z : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$.

Definition 1.6. Let $k \in \mathbb{N}$. For any state $x \in \mathcal{X}$, we denote the k th return time to state x by $\tau_x^+(k)$ and k th sojourn time in state x by $Y_k^{(x)}$. We inductively define $\tau_x^+(0) \triangleq 0$ and

$$\tau_x^+(k) \triangleq \inf \left\{ t > \tau_x^+(k-1) + Y_k^{(x)} : X_t = x \right\}.$$

Definition 1.7. A state $x \in \mathcal{X}$ is said to be *recurrent* if $P_x \{ \tau_x^+(1) < \infty \} = 1$ and *transient* if $P_x \{ \tau_x^+(1) < \infty \} < 1$. Furthermore, a recurrent state x is said to be *positive recurrent* if $\mathbb{E}_x \tau_x^+(1) < \infty$ and *null recurrent* if $\mathbb{E}_x \tau_x^+(1) = \infty$.

Definition 1.8. We denote the number of visits to state y during k th successive visit to state x by

$$N_{xy}(k) \triangleq \sum_{n \in \mathbb{N}} \mathbb{1}_{\{[S_n, S_{n+1}) \subseteq [\tau_x^+(k-1), \tau_x^+(k))\}} \mathbb{1}_{\{Z_n = y\}}.$$

The total number of visits to all states during k th successive visit to state x is defined as

$$N_x(k) \triangleq \sum_{y \in \mathcal{X}} N_{xy}(k) = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{[S_n, S_{n+1}) \subseteq [\tau_x^+(k-1), \tau_x^+(k))\}}.$$

The total number to visits to all states before k th return to state x is defined as $S_x^+(k) \triangleq \sum_{j=1}^k N_x(j)$.

Lemma 1.9. *We define the j th sojourn time in state y during k th return duration $[\tau_x^+(k-1), \tau_x^+(k))$ for state x as $Y_{kj}^{(y)}$. Then, the k return time to state x is $\tau_x^+(k) = \tau_x^+(k-1) + \sum_{y \in \mathcal{X}} \sum_{j=1}^{N_{xy}(k)} Y_{kj}^{(y)}$.*

Proof. Since $1 = \mathbb{1}_{\{X_t \in \mathcal{X}\}} = \mathbb{1}_{\cup_{y \in \mathcal{X}} \{X_t = y\}} = \sum_{y \in \mathcal{X}} \mathbb{1}_{\{X_t = y\}}$, we can write the following equality

$$\tau_x^+(k) = \tau_x^+(k-1) + \int_{\tau_x^+(k-1)}^{\tau_x^+(k)} \sum_{y \in \mathcal{X}} \mathbb{1}_{\{X_t = y\}} dt.$$

Further, we can write $\mathbb{1}_{\{X_t = y\}} = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{Z_n = y\}} \mathbb{1}_{[S_n, S_{n+1})}(t)$. Interchanging sum and integral using monotone convergence theorem, we obtain

$$\tau_x^+(k) = \tau_x^+(k-1) + \sum_{y \in \mathcal{X}} \sum_{n \in \mathbb{N}} (S_{n+1} - S_n) \mathbb{1}_{\{Z_n = y\}} \mathbb{1}_{\{[S_n, S_{n+1}) \subseteq [\tau_x^+(k-1), \tau_x^+(k))\}}.$$

We observe that $\{n \in \mathbb{N} : S_x^+(k-1) \leq n < S_x^+(k)\} = \{n \in \mathbb{N} : [S_n, S_{n+1}) \subseteq [\tau_x^+(k-1), \tau_x^+(k))\}$, and hence $V_{xy}(k) \triangleq \{n \in \mathbb{N} : S_x^+(k-1) \leq n < S_x^+(k), Z_n = y\}$ is the set of transitions which correspond to visits to state y during k th return time to state x , and $N_{xy}(k) = |V_{xy}(k)|$. Further, the duration $S_{n+1} - S_n$ is the sojourn time in state Z_n . Therefore, the result follows. \square

Theorem 1.10. *Consider a pure jump homogeneous continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ with embedded discrete time Markov chain $Z : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$. If Z is recurrent then all states of X are stable, and the number of jumps is finite in any finite time t .*

Proof. Since X is a pure jump Markov process, transition rate $\nu_x > 0$ for each state $x \in \mathcal{X}$. Let $X_0 = x \in \mathcal{X}$ be the initial state. Let $N_x(n) = \sum_{k=1}^n \mathbb{1}_{\{Z_k = x\}}$ be the number of visits to a state $x \in \mathcal{X}$ in the first n transitions and T_i^x be the i th sojourn time in the state x . From the recurrence of the embedded chain, the state x occurs infinitely often, i.e. $\lim_{n \in \mathbb{N}} N_x(n) = \infty$ almost surely. It follows that the sojourn time sequence $T^x : \Omega \rightarrow \mathbb{R}_+^{\mathbb{N}}$ is i.i.d. and exponentially distributed with mean $\mathbb{E} T_i^x = 1/\nu_x < \infty$. Since the choice of x was arbitrary, it follows that each state $x \in \mathcal{X}$ is stable.

Since $S_n \geq \sum_{i=1}^{N_x(n)} T_i^x$, we get that $m_t = \sum_{n \in \mathbb{N}} P\{S_n \leq t\} \leq \sum_{n \in \mathbb{N}} P\left\{\sum_{i=1}^{N_x(n)} T_i^x \leq t\right\} = \nu_x t$. It follows that N_t is almost surely finite for any finite time $t \in \mathbb{R}_+$. \square

Theorem 1.11. *Consider a pure jump irreducible continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ with embedded discrete time Markov chain $Z : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$. X is recurrent iff Z is recurrent.*

Proof. There is nothing to prove for $|\mathcal{X}| = 1$. Hence, we assume $|\mathcal{X}| \geq 2$ without loss of generality.

- (a) We assume that the embedded Markov chain is recurrent, then each state is stable from Theorem 1.10. Further, a pure jump continuous time Markov chain with all stable states is irreducible iff embedded discrete time Markov chain is irreducible from Corollary 1.5. Let $X_0 = x \in \mathcal{X}$, and we observe that the recurrence time $\tau_x^+(1)$ is an a.s. finite sum of finite random variables, it follows that $\tau_x^+(1)$ is finite almost surely.
- (b) Conversely, if the embedded Markov chain is not recurrent, it has a transient state $x \in \mathcal{X}$ for which $P_x\{N_x = \infty\} > 0$. By the same argument, $P_x\{\tau_x^+ = \infty\} > 0$ and hence the continuous time Markov chain is not recurrent.

\square

Corollary 1.12. *Recurrence is a class property.*

Theorem 1.13. *Consider an irreducible positive recurrent discrete time Markov chain $Z : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$ with transition probability matrix $p \in \mathcal{M}(\mathcal{X})^{\mathcal{X}}$ and invariant distribution $u \in \mathcal{M}(\mathcal{X})$. Then,*

$$u_y = \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \mathbb{1}_{\{Z_n = y\}} = \frac{\mathbb{E}_x N_{xy}(k)}{\mathbb{E}_x N_x(k)} = u_x \mathbb{E}_x N_{xy}(k).$$

Proof. Let $Z_0 = x$. For a homogeneous Markov chain Z , the random sequence $S_x^+ : \Omega \rightarrow \mathbb{N}^{\mathbb{N}}$ is a renewal sequence, and the number of visits $N_x(k)$ to all states before the k th return to state x is the k th inter-return time to state x . The number of visits to state y between two successive visits to state x is

$$N_{xy}(k) = \sum_{n=S_x^+(k-1)+1}^{S_x^+(k)} \mathbb{1}_{\{Z_n=y\}}.$$

We can consider $N_{xy}(k)$ as the reward in the k th renewal duration. The result follows from the renewal reward theorem and the fact that $N_{xx}(k) = 1$ for all $k \in \mathbb{N}$ and $x \in \mathcal{X}$. \square

Theorem 1.14. Consider an irreducible recurrent continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ with sojourn time rates $v \in \mathbb{R}_+^{\mathcal{X}}$ and transition matrix $p \in \mathcal{M}(\mathcal{X})^{\mathcal{X}}$ for the embedded Markov chain $Z : \Omega \rightarrow \mathcal{X}^{\mathbb{Z}_+}$. Let $u \in \mathbb{R}_+^{\mathcal{X}}$ be any strictly positive solution of $u = up$, then for each state $x \in \mathcal{X}$

$$\mathbb{E}_x \tau_x^+(1) = \frac{1}{u_x} \sum_{y \in \mathcal{X}} \frac{u_y}{v_y}. \quad (1)$$

Further, the process X is positive recurrent iff $\sum_{x \in \mathcal{X}} \frac{u_x}{v_x} < \infty$.

Proof. Let $X_0 = x \in \mathcal{X}$. Recall that $Y_k^{(x)}$ denotes the k th sojourn time of the Markov process X in state x , and the random sequence $Y^{(x)} : \Omega \rightarrow \mathbb{R}_+^{\mathbb{N}}$ is i.i.d. with common exponential distribution of rate v_x . From Lemma 1.9, the first visit time to state x in terms of $N_{xy}(1)$ and sojourn times $Y_k^{(y)}$ for each state $y \in \mathcal{X}$, is $\tau_x^+(1) = \sum_{y \in \mathcal{X}} \sum_{k=1}^{N_{xy}(1)} Y_k^{(y)}$. We recall that jump chain Z and sojourn times are independent given the initial state, and hence $N_{xy}(1)$ and $Y^{(y)}$ sequences are independent for each state $y \neq x$. From taking expectations on both sides, exchanging summation and expectations by the application of monotone convergence theorem for positive random variables, we get $\mathbb{E}_x \tau_x^+(1) = \sum_{y \in \mathcal{X}} \mathbb{E} Y_k^{(y)} \mathbb{E}_x N_{xy}$. To show (1), it suffices to show that $\mathbb{E}_x N_{xy}(k) = \frac{u_y}{u_x}$.

The embedded Markov chain Z inherits the irreducibility and recurrence of the Markov process X from Corollary 1.5 and Theorem 1.11. For irreducible and recurrent Markov chain Z with transition matrix p and any strictly positive solution to $u = up$, we have $\mathbb{E}_x N_{xy}(k) = \frac{u_y}{u_x}$ from Theorem 1.13.

Since u is strictly positive, it follows that $\mathbb{E}_x \tau_x^+(1) < \infty$ iff $\sum_{y \in \mathcal{X}} \frac{u_y}{v_y} < \infty$. \square

Remark 2. For an irreducible regular continuous time Markov chain X , the embedded Markov chain Z is irreducible and recurrent. If Z with transition matrix p is positive recurrent, then there exists a strictly positive solution equilibrium distribution $u \in \mathcal{M}(\mathcal{X})$ such that $u = up$. However, it is possible that rates $v \in \mathbb{R}_+^{\mathcal{X}}$ ensure that $\sum_{y \in \mathcal{X}} \frac{u_y}{v_y} = \infty$, in which case X is null recurrent.

2 Invariant Distribution

Remark 3. For a homogeneous Markov process $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ with probability transition kernel $P : \mathbb{R}_+ \rightarrow \mathcal{M}(\mathcal{X})^{\mathcal{X}}$, we denote the marginal distribution of random variable X_t at time t by $\nu(t) \in \mathcal{M}(\mathcal{X})$, where for each time $t \in \mathbb{R}_+$

$$\nu(t) = \nu(0)P(t).$$

In general, we can write $\nu(s+t) = \nu(s)P(t)$. Hence, if there exists a stationary distribution $\pi \triangleq \lim_{s \rightarrow \infty} \nu(s)$ for this process X , then we would have $\pi = \pi P(t)$ for all times $t \in \mathbb{R}_+$.

Definition 2.1. A distribution $\pi \in \mathcal{M}(\mathcal{X})$ is an *invariant distribution* of a homogeneous continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ with probability transition kernel $P : \mathbb{R}_+ \rightarrow \mathcal{M}(\mathcal{X})^{\mathcal{X}}$ if $\pi P(t) = \pi$ for all $t \in \mathbb{R}_+$.

Corollary 2.2. For a homogeneous continuous time Markov chain $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ with generator matrix Q , a distribution $\pi \in \mathcal{M}(\mathcal{X})$ is an *equilibrium distribution* iff $\pi Q = 0$.

Proof. Recall that we can write the transition probability matrix $P(t)$ at any time $t \in \mathbb{R}_+$ in terms of generator matrix Q as $P(t) = e^{tQ}$. Using the exponentiation of a matrix, we can write

$$\pi P(t) = \pi e^{tQ} = \pi + \sum_{n \in \mathbb{N}} \frac{t^n}{n!} \pi Q^n, \quad t \in \mathbb{R}_+.$$

Therefore, $\pi Q = 0$ iff π is an equilibrium distribution of the Markov process X . \square

Theorem 2.3. Let $X : \Omega \rightarrow \mathcal{X}^{\mathbb{R}_+}$ be an irreducible recurrent homogeneous continuous time Markov chain with probability transition kernel $P : \mathbb{R}_+ \rightarrow \mathcal{M}(\mathcal{X})^{\mathcal{X}}$, the transition rate sequence $v \in \mathbb{R}_+^{\mathcal{X}}$, and the transition matrix for embedded jump chain $p \in \mathcal{M}(\mathcal{X})^{\mathcal{X}}$. Then for all states $x, y \in \mathcal{X}$ the $\lim_{t \rightarrow \infty} P_{xy}(t)$ exists, this limit is independent of the initial state $x \in \mathcal{X}$ and denoted by π_y . Let u be any strictly positive invariant measure such that $u = up$. If $\sum_{x \in \mathcal{X}} \frac{u_x}{v_x} = \infty$, then $\pi_y = 0$ for all $y \in \mathcal{X}$. If $\sum_{x \in \mathcal{X}} \frac{u_x}{v_x} < \infty$ then for all $y \in \mathcal{X}$,

$$\pi_y = \frac{\frac{u_y}{v_y}}{\sum_{x \in \mathcal{X}} \frac{u_x}{v_x}} = \frac{v_y^{-1}}{\mathbb{E}_y \tau_y^+(1)}. \quad (2)$$

Proof. Fix a state $y \in \mathcal{X}$, and define a process $W : \Omega \rightarrow \{0,1\}^{\mathbb{R}_+}$ such that $W_t = \mathbb{1}_{\{X_t=y\}}$. Then, from the regenerative property of the homogeneous continuous time Markov chain and renewal reward theorem, we have

$$\pi_y \triangleq \lim_{t \rightarrow \infty} P_x \{X_t = y\} = \lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t \mathbb{1}_{\{X_s=y\}} ds = \frac{\mathbb{E}_y Y_k^{(y)}}{\mathbb{E}_y \tau_y^+(k)} = \frac{v_y^{-1}}{\mathbb{E}_y \tau_y^+(1)}.$$

We have considered k th hitting time $\tau_y^+(k)$ to state y as k th renewal instant, and the k th sojourn time in state y $\int_{\tau_y^+(k-1)}^{\tau_y^+(k)} \mathbb{1}_{\{X_s=y\}} ds = Y_k^{(y)}$ as the reward in the k th inter renewal period. \square

Remark 4. We observe that $\pi Q = 0$ for distribution $\pi \in \mathcal{M}(\mathcal{X})$ defined in (2), since $u = up$ and $Q_{xy} = v_x p_{xy}$ for all states $x, y \in \mathcal{X}$.