Lecture-21: Invariant Distribution of Markov Processes

1 Class properties

Definition 1.1. For a time homogeneous continuous time Markov chain X : 3 — AR+ we say a state
y is reachable from state x if Pyy(t) > 0 for some t > 0, and we denote x — y. If two states x,y € X are
reachable from each other, we say that they communicate and denote it by x <+ y.

Lemma 1.2. Communication is an equivalence relation.

Definition 1.3. Communication equivalence relation partitions the state space X into equivalence classes
called communicating classes. A continuous time Markov chain with a single communicating class is
called irreducible.

Theorem 1.4. A pure jump continuous time Markov chain with all stable states and its embedded discrete time
Markov chain have the same communicating classes.

Proof. It suffices to show that x — y for the regular Markov process iff x — y in the embedded chain. If
x — y for the embedded chain, then there exists a path x = xg, x1,...,x;, =y such that py x, Prixy - - - P, 120 >
0 and 0 < vy, Vy, ...Vx, ;. It follows that S, is a stopping time and sum of n independent exponential
random variables with rates vy, ..., vy, ,, and we can write

n—1

ny(t) 2 P{XO = xO,Xsl = xl,...,Xsn = Xn,Nt = Yl} = prkxk+1lE[]]‘{Nt:n} | ﬂ?ZO{ZZ‘ = x,‘}] > 0.
k=0

Conversely, if the states y is not reachable from state x in embedded chain, then it won’t be reachable in
the regular continuous time Markov chain. O

Corollary 1.5. A pure jump continuous time Markov chain with all stable states is irreducible iff its embedded
discrete time Markov chain is irreducible.

Remark 1. There is no notion of periodicity in continuous time Markov chains since there is no funda-
mental time-step that can be used as a reference to define such a notion. In fact, for any state x € X
of a non-instantaneous homogeneous continuous time Markov chain we have Pyy(t) > e~ > 0 for all
t>0.

1.1 Recurrence and transience

Consider a continuous time Markov chain X : QO — XR+ and its embedded discrete time Marko chain
Z:Q — X%+,

Definition 1.6. Let k € N. For any state x € X, we denote the kth return time to state x by ;" (k) and kth
sojourn time in state x by Yk(x). We inductively define 7,7 (0) £ 0 and

o () Zint{e> o (k= 1) + Y7 X =x}.

Definition 1.7. A state x € X is said to be recurrent if Py {7ty (1) < 0o} =1 and transient if Py {7y (1) < 00} <
1. Furthermore, a recurrent state x is said to be positive recurrent if E,t; (1) < oo and null recurrent if
E.7f (1) = oo.

Definition 1.8. We denote the number of visits to state y during kth successive visit to state x by

Ny (k) = Z]N]1{[sn,sm>g[r¢<k—1>,r;<k)>}H{Zn:y}'
ne



The total number of visits to all states during kth successive visit to state x is defined as

L _
= y;c Nay (k) = ng\} L1880 1)l (k=17 (k) b+

The total number to visits to all states before kth return to state x is defined as S (k) = Z 1 Nx(j)-

Lemma 1.9. We define the jth sojourn time in state y during kth return dumtion [T+ (k—1),7 (k) for state x
as Yk(].y). Then, the k return time to state x is T (k) = 7/ (k — 1) + Lyex ENW ).

Proof. Since 1 = 1yx,cxy = 1y, o {x=y} = Lyex L{x,—y}, We can write the following equality

. . o (k)
k) =7 (k—1)+ /T . y;c 1yt

Further, we can write 1;x,—,y = Ynew Liz,—y} L[s,.s,.,) () Interchanging sum and integral using mono-
tone convergence theorem, we obtain

+ _ _ J—
k) =5 (k—1) +y§c gq nt1 = S)lz,=yy L5, 5, )l (k1) (0) )

Weobservethat {n e N: S (k—1)<n<Sf(k)} ={neN:[S,,S,+1) C [ty (k—1),7 (k))}, and hence
Viy(k) £ {n € N: SF (k—1) <n < S (k),Z, =y} is the set of transitions which correspond to visits to
state y during kth return time to state x, and Ny, (k) = |V, (k)|. Further, the duration S, .1 — Sy, is the
sojourn time in state Z,. Therefore, the result follows. O

Theorem 1.10. Consider a pure jump homogeneous continuous time Markov chain X : Q) — XR+ with embedded
discrete time Markov chain Z : Q) — X%+, If Z is recurrent then all states of X are stable, and the number of
jumps is finite in any finite time t.

Proof. Since X is a pure jump Markov process, transition rate vy > 0 for each state x € X. Let Xg =x € X
be the initial state. Let Nx(n) = }3_; 1y7 —,, be the number of visits to a state x € X in the first n
transitions and T} be the ith sojourn time in the state x. From the recurrence of the embedded chain,
the state x occurs infinitely often, i.e. lim,cn Ny (1) = oo almost surely. It follows that the sojourn time
sequence T* : ) — R is i.i.d. and exponentially distributed with mean ET* = 1/vy < co. Since the
choice of x was arbitrary, it follows that each state x € X is stable.

Since S, > ZZN"(H) T}, we get that m; = Y ey P {Sn <t} < LTpenP {Zfi‘l(”) T* < t} = v,t. It follows

1
that N; is almost surely finite for any finite time t € R..

Theorem 1.11. Consider a pure jump irreducible continuous time Markov chain X : Q) — XR+ with embedded
discrete time Markov chain Z : Q0 — X%+. X is recurrent iff Z is recurrent.

Proof. There is nothing to prove for |X| = 1. Hence, we assume |X| > 2 without loss of generality.

(a) We assume that the embedded Markov chain is recurrent, then each state is stable from Theo-
rem Further, a pure jump continuous time Markov chain with all stable states is irreducible
iff embedded discrete time Markov chain is irreducible from Corollary Let Xp =x € X, and we
observe that the recurrence time 7,7 (1) is an a.s. finite sum of finite random variables, it follows that
7 (1) is finite almost surely.

(b) Conversely, if the embedded Markov chain is not recurrent, it has a transient state x € X for which
P {N, = o0} > 0. By the same argument, Py {7;" = oo} > 0 and hence the continuous time Markov
chain is not recurrent.

O

Corollary 1.12. Recurrence is a class property.

Theorem 1.13. Consider an irreducible positive recurrent discrete time Markov chain Z : Q) — X%+ with tran-
sition probability matrix p € M(X)X and invariant distribution u € M(X). Then,

ExNyy (k)
u, = lim — Z Liz,=y} = ]Ex Nf;y( ) = 1xJEx Nyy (k).

N—oo N



Proof. Let Zg = x. For a homogeneous Markov chain Z, the random sequence Sy : ) — INN is a renewal
sequence, and the number of visits Ny (k) to all states before the kth return to state x is the kth inter-
return time to state x. The number of visits to state 1 between two successive visits to state x is

Sy (k)

ny(k) = Z ]]'{Zn:y}'
n=8¥ (k—1)+1

We can consider Ny (k) as the reward in the kth renewal duration. The result follows from the renewal
reward theorem and the fact that Ny, (k) =1 forallk € N and x € X. O

Theorem 1.14. Consider an irreducible recurrent continuous time Markov chain X : Q — X®+ with sojourn
time rates v € R and transition matrix p € M(X)™ for the embedded Markov chain Z : Q0 — X%+. Let u € RY
be any strictly positive solution of u = up, then for each state x € X

Eri(1)=— Y 2. 1)

Further, the process X is positive recurrent iff ..y 1 < oo.

Proof. Let Xg = x € X. Recall that Yk(x) denotes the kth sojourn time of the Markov process X in state x,
and the random sequence Y ) : ) — RY is i.i.d. with common exponential distribution of rate vy. From

Lemma the first visit time to state x in terms of Ny, (1) and sojourn times Y,Sy) for each state y € X,
. Ny
18 T;— ( ) Zyex Z y

initial state, and hence ny( ) and Y() sequences are independent for each state y # x. From taking
expectations on both sides, exchanging summation and expectations by the application of monotone

@ Y ¥). We recall that jump chain Z and sojourn times are independent given the

convergence theorem for positive random variables, we get Ex7; (1) = ¥ ex ]EYk(y 'E xNyy. To show (T,
it suffices to show that [Ey Ny, (k) = e

Uy

The embedded Markov chain Z 1nher1ts the irreducibility and recurrence of the Markov process X
from Corollary [L.5|and Theorem [1.1T] For irreducible and recurrent Markov chain Z with transition

matrix p and any strictly positive solution to u = up, we have Ey Ny, (k) = uy from Theoremm
Since u is strictly positive, it follows that Ey 7, (1) < co iff 7, e V—; < o0. O

Remark 2. For an irreducible regular continuous time Markov chain X, the embedded Markov chain Z
is irreducible and recurrent. If Z with transition matrix p is positive recurrent, then there exists a strictly
positive solution equilibrium distribution u € M (X) such that u = up. However, it is possible that rates
v € RY ensure that Yyex % = o0, in which case X is null recurrent.

2 Invariant Distribution

Remark 3. For a homogeneous Markov process X : Q) — XR+ with probability transition kernel P: R —
M(X)X, we denote the marginal distribution of random variable X; at time t by v(t) € M(X), where
for each time t € R4

v(t) =v(0)P(t).

In general, we can write v(s + t) = v(s) P(t). Hence, if there exists a stationary distribution 77 £ lim,_,« v(s)
for this process X, then we would have 7t = 7P(t) for all times t € R.

Definition 2.1. A distribution 7t € M(X) is an invariant distribution of a homogeneous continuous time
Markov chain X : Q — XR+ with probability transition kernel P : Ry — M (X)¥ if 7P(t) = 7t for all
teR,.

Corollary 2.2. For a homogeneous continuous time Markov chain X : Q — XR+ with generator matrix Q, a
distribution T € M(X) is an equilibrium distribution iff TQ = 0.

Proof. Recall that we can write the transition probability matrix P(t) at any time t € R in terms of
generator matrix Q as P(t) = e!Q. Using the exponentiation of a matrix, we can write

nP(t)=me®=m+ Y —nQ" t€R;.
nE]N

Therefore, 7Q = 0 iff 7 is an equilibrium distribution of the Markov process X. O



Theorem 2.3. Let X : QO — X®+ be an irreducible recurrent homogeneous continuous time Markov chain with
probability transition kernel P : Ry — M (X)X, the transition rate sequence v € R, and the transition matrix
for embedded jump chain p € M(X)*. Then for all states x,y € X the im0 Pxy(t) exists, this limit is inde-
pendent of the initial state x € X and denoted by 7t,. Let u be any strictly positive invariant measure such that
u=up. If Yyex 1= =00, then my =0 forally € X. If Yy e 1= < oo then forall y € X,

Hy -1
Yy Yy
M e By (1) ¥

Proof. Fix a state y € X, and define a process W : (3 — {0,1}]R+ such that Wy = 1;x,_ 1. Then, from
the regenerative property of the homogeneous continuous time Markov chain and renewal reward
theorem, we have

]Eka(y) oy
E, 7/ (k) Eyt (1)

A1 1ot
Ty = tlg‘gon {Xe=y} = tl;n;o?/() Lix,—yyds =

We have considered kth hitting time Ter (k) to state y as kth renewal instant, and the kth sojourn time in

4
state y f:ﬂ (kkj 1 Lix,=yyds = Yk(y ) as the reward in the kth inter renewal period. O
y (k=1)

Remark 4. We observe that mQ = 0 for distribution 77 € M(X) defined in @), since u = up and Qy, =
vy pxy for all states x,y € X.
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