
Lecture-21: Invariant Distribution of Markov Processes

1 Class properties

Definition 1.1. For a time homogeneous continuous time Markov chain X : Ω → XR+ , we say a state
y is reachable from state x if Pxy(t) > 0 for some t > 0, and we denote x → y. If two states x,y ∈ X are
reachable from each other, we say that they communicate and denote it by x ↔ y.

Lemma 1.2. Communication is an equivalence relation.

Definition 1.3. Communication equivalence relation partitions the state space X into equivalence classes
called communicating classes. A continuous time Markov chain with a single communicating class is
called irreducible.

Theorem 1.4. A pure jump continuous time Markov chain with all stable states and its embedded discrete time
Markov chain have the same communicating classes.

Proof. It suffices to show that x → y for the regular Markov process iff x → y in the embedded chain. If
x → y for the embedded chain, then there exists a path x = x0, x1, . . . , xn = y such that px0x1 px1x2 . . . pxn−1xn >
0 and 0 < νx0 νx1 . . . νxn−1 . It follows that Sn is a stopping time and sum of n independent exponential
random variables with rates νx0 , . . . ,νxn−1 , and we can write

Pxy(t)⩾ P
{

X0 = x0, XS1 = x1, . . . , XSn = xn, Nt = n
}
=

n−1

∏
k=0

pxkxk+1E[1{Nt=n} | ∩n
i=0 {Zi = xi}] > 0.

Conversely, if the states y is not reachable from state x in embedded chain, then it won’t be reachable in
the regular continuous time Markov chain.

Corollary 1.5. A pure jump continuous time Markov chain with all stable states is irreducible iff its embedded
discrete time Markov chain is irreducible.

Remark 1. There is no notion of periodicity in continuous time Markov chains since there is no funda-
mental time-step that can be used as a reference to define such a notion. In fact, for any state x ∈ X

of a non-instantaneous homogeneous continuous time Markov chain we have Pxx(t) > e−νxt > 0 for all
t ⩾ 0.

1.1 Recurrence and transience

Consider a continuous time Markov chain X : Ω → XR+ and its embedded discrete time Marko chain
Z : Ω → XZ+ .

Definition 1.6. Let k ∈ N. For any state x ∈X, we denote the kth return time to state x by τ+
x (k) and kth

sojourn time in state x by Y(x)
k . We inductively define τ+

x (0)≜ 0 and

τ+
x (k)≜ inf

{
t > τ+

x (k − 1) + Y(x)
k : Xt = x

}
.

Definition 1.7. A state x ∈X is said to be recurrent if Px {τ+
x (1) < ∞}= 1 and transient if Px {τ+

x (1) < ∞}<
1. Furthermore, a recurrent state x is said to be positive recurrent if Exτ+

x (1) < ∞ and null recurrent if
Exτ+

x (1) = ∞.

Definition 1.8. We denote the number of visits to state y during kth successive visit to state x by

Nxy(k)≜ ∑
n∈N

1{[Sn ,Sn+1)⊆[τ+x (k−1),τ+x (k))}1{Zn=y}.
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The total number of visits to all states during kth successive visit to state x is defined as

Nx(k)≜ ∑
y∈X

Nxy(k) = ∑
n∈N

1{[Sn ,Sn+1)⊆[τ+x (k−1),τ+x (k))}.

The total number to visits to all states before kth return to state x is defined as S+
x (k)≜ ∑k

j=1 Nx(j).

Lemma 1.9. We define the jth sojourn time in state y during kth return duration [τ+
x (k − 1),τ+

x (k)) for state x

as Y(y)
kj . Then, the k return time to state x is τ+

x (k) = τ+
x (k − 1) + ∑y∈X ∑

Nxy(k)
j=1 Y(y)

kj .

Proof. Since 1 = 1{Xt∈X} = 1∪y∈X{Xt=y} = ∑y∈X1{Xt=y}, we can write the following equality

τ+
x (k) = τ+

x (k − 1) +
∫ τ+x (k)

τ+x (k−1)
∑

y∈X
1{Xt=y}dt.

Further, we can write 1{Xt=y} = ∑n∈N1{Zn=y}1[Sn ,Sn+1)
(t). Interchanging sum and integral using mono-

tone convergence theorem, we obtain

τ+
x (k) = τ+

x (k − 1) + ∑
y∈X

∑
n∈N

(Sn+1 − Sn)1{Zn=y}1{[Sn ,Sn+1)⊆[τ+x (k−1),τ+x (k))}.

We observe that {n ∈ N : S+
x (k − 1)⩽ n < S+

x (k)}= {n ∈ N : [Sn,Sn+1) ⊆ [τ+
x (k − 1),τ+

x (k))}, and hence
Vxy(k)≜ {n ∈ N : S+

x (k − 1)⩽ n < S+
x (k), Zn = y} is the set of transitions which correspond to visits to

state y during kth return time to state x, and Nxy(k) =
∣∣Vxy(k)

∣∣. Further, the duration Sn+1 − Sn is the
sojourn time in state Zn. Therefore, the result follows.

Theorem 1.10. Consider a pure jump homogeneous continuous time Markov chain X : Ω →XR+ with embedded
discrete time Markov chain Z : Ω → XZ+ . If Z is recurrent then all states of X are stable, and the number of
jumps is finite in any finite time t.

Proof. Since X is a pure jump Markov process, transition rate νx > 0 for each state x ∈ X. Let X0 = x ∈ X

be the initial state. Let Nx(n) = ∑n
k=11{Zk=x} be the number of visits to a state x ∈ X in the first n

transitions and Tx
i be the ith sojourn time in the state x. From the recurrence of the embedded chain,

the state x occurs infinitely often, i.e. limn∈N Nx(n) = ∞ almost surely. It follows that the sojourn time
sequence Tx : Ω → RN

+ is i.i.d. and exponentially distributed with mean ETx
i = 1/νx < ∞. Since the

choice of x was arbitrary, it follows that each state x ∈ X is stable.
Since Sn ⩾ ∑

Nx(n)
i=1 Tx

i , we get that mt = ∑n∈N P{Sn ⩽ t} ⩽ ∑n∈N P
{

∑
Nx(n)
i=1 Tx

i ⩽ t
}
= νxt. It follows

that Nt is almost surely finite for any finite time t ∈ R+.

Theorem 1.11. Consider a pure jump irreducible continuous time Markov chain X : Ω → XR+ with embedded
discrete time Markov chain Z : Ω → XZ+ . X is recurrent iff Z is recurrent.

Proof. There is nothing to prove for |X| = 1. Hence, we assume |X|⩾ 2 without loss of generality.
(a) We assume that the embedded Markov chain is recurrent, then each state is stable from Theo-

rem 1.10. Further, a pure jump continuous time Markov chain with all stable states is irreducible
iff embedded discrete time Markov chain is irreducible from Corollary 1.5. Let X0 = x ∈ X, and we
observe that the recurrence time τ+

x (1) is an a.s. finite sum of finite random variables, it follows that
τ+

x (1) is finite almost surely.
(b) Conversely, if the embedded Markov chain is not recurrent, it has a transient state x ∈ X for which

Px {Nx = ∞} > 0. By the same argument, Px {τ+
x = ∞} > 0 and hence the continuous time Markov

chain is not recurrent.

Corollary 1.12. Recurrence is a class property.

Theorem 1.13. Consider an irreducible positive recurrent discrete time Markov chain Z : Ω → XZ+ with tran-
sition probability matrix p ∈M(X)X and invariant distribution u ∈M(X). Then,

uy = lim
N→∞

1
N

N

∑
n=1

1{Zn=y} =
Ex Nxy(k)
Ex Nx(k)

= uxEx Nxy(k).
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Proof. Let Z0 = x. For a homogeneous Markov chain Z, the random sequence S+
x : Ω → NN is a renewal

sequence, and the number of visits Nx(k) to all states before the kth return to state x is the kth inter-
return time to state x. The number of visits to state y between two successive visits to state x is

Nxy(k) =
S+

x (k)

∑
n=S+

x (k−1)+1

1{Zn=y}.

We can consider Nxy(k) as the reward in the kth renewal duration. The result follows from the renewal
reward theorem and the fact that Nxx(k) = 1 for all k ∈ N and x ∈ X.

Theorem 1.14. Consider an irreducible recurrent continuous time Markov chain X : Ω → XR+ with sojourn
time rates ν ∈ RX

+ and transition matrix p ∈M(X)X for the embedded Markov chain Z : Ω →XZ+ . Let u ∈ RX
+

be any strictly positive solution of u = up, then for each state x ∈ X

Exτ+
x (1) =

1
ux

∑
y∈X

uy

νy
. (1)

Further, the process X is positive recurrent iff ∑x∈X
ux
νx

< ∞.

Proof. Let X0 = x ∈ X. Recall that Y(x)
k denotes the kth sojourn time of the Markov process X in state x,

and the random sequence Y(x) : Ω → RN
+ is i.i.d. with common exponential distribution of rate νx. From

Lemma 1.9, the first visit time to state x in terms of Nxy(1) and sojourn times Y(y)
k for each state y ∈ X,

is τ+
x (1) = ∑y∈X ∑

Nxy(1)
k=1 Y(y)

k . We recall that jump chain Z and sojourn times are independent given the
initial state, and hence Nxy(1) and Y(y) sequences are independent for each state y ̸= x. From taking
expectations on both sides, exchanging summation and expectations by the application of monotone
convergence theorem for positive random variables, we get Exτ+

x (1) = ∑y∈X EY(y)
k Ex Nxy. To show (1),

it suffices to show that Ex Nxy(k) =
uy
ux

.
The embedded Markov chain Z inherits the irreducibility and recurrence of the Markov process X

from Corollary 1.5 and Theorem 1.11. For irreducible and recurrent Markov chain Z with transition
matrix p and any strictly positive solution to u = up, we have Ex Nxy(k) =

uy
ux

from Theorem 1.13.
Since u is strictly positive, it follows that Exτ+

x (1) < ∞ iff ∑y∈X
uy
νy

< ∞.

Remark 2. For an irreducible regular continuous time Markov chain X, the embedded Markov chain Z
is irreducible and recurrent. If Z with transition matrix p is positive recurrent, then there exists a strictly
positive solution equilibrium distribution u ∈M(X) such that u = up. However, it is possible that rates
ν ∈ RX

+ ensure that ∑y∈X
uy
νy

= ∞, in which case X is null recurrent.

2 Invariant Distribution

Remark 3. For a homogeneous Markov process X : Ω →XR+ with probability transition kernel P : R+ →
M(X)X, we denote the marginal distribution of random variable Xt at time t by ν(t) ∈ M(X), where
for each time t ∈ R+

ν(t) = ν(0)P(t).

In general, we can write ν(s+ t) = ν(s)P(t). Hence, if there exists a stationary distribution π ≜ lims→∞ ν(s)
for this process X, then we would have π = πP(t) for all times t ∈ R+.

Definition 2.1. A distribution π ∈M(X) is an invariant distribution of a homogeneous continuous time
Markov chain X : Ω → XR+ with probability transition kernel P : R+ → M(X)X if πP(t) = π for all
t ∈ R+.

Corollary 2.2. For a homogeneous continuous time Markov chain X : Ω → XR+ with generator matrix Q, a
distribution π ∈M(X) is an equilibrium distribution iff πQ = 0.

Proof. Recall that we can write the transition probability matrix P(t) at any time t ∈ R+ in terms of
generator matrix Q as P(t) = etQ. Using the exponentiation of a matrix, we can write

πP(t) = πetQ = π + ∑
n∈N

tn

n!
πQn, t ∈ R+.

Therefore, πQ = 0 iff π is an equilibrium distribution of the Markov process X.
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Theorem 2.3. Let X : Ω → XR+ be an irreducible recurrent homogeneous continuous time Markov chain with
probability transition kernel P : R+ →M(X)X, the transition rate sequence ν ∈ RX

+ , and the transition matrix
for embedded jump chain p ∈ M(X)X. Then for all states x,y ∈ X the limt→∞ Pxy(t) exists, this limit is inde-
pendent of the initial state x ∈ X and denoted by πy. Let u be any strictly positive invariant measure such that
u = up. If ∑x∈X

ux
νx

= ∞, then πy = 0 for all y ∈ X. If ∑x∈X
ux
νx

< ∞ then for all y ∈ X,

πy =

uy
νy

∑x∈X
ux
νx

=
ν−1

y

Eyτ+
y (1)

. (2)

Proof. Fix a state y ∈ X, and define a process W : Ω → {0,1}R+ such that Wt = 1{Xt=y}. Then, from
the regenerative property of the homogeneous continuous time Markov chain and renewal reward
theorem, we have

πy ≜ lim
t→∞

Px {Xt = y} = lim
t→∞

1
t

∫ t

0
1{Xs=y}ds =

EyY(y)
k

Eyτ+
y (k)

=
ν−1

y

Eyτ+
y (1)

.

We have considered kth hitting time τ+
y (k) to state y as kth renewal instant, and the kth sojourn time in

state y
∫ τ+y (k)

τ+y (k−1)
1{Xs=y}ds = Y(y)

k as the reward in the kth inter renewal period.

Remark 4. We observe that πQ = 0 for distribution π ∈ M(X) defined in (2), since u = up and Qxy =
νx pxy for all states x,y ∈ X.
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