Lecture-22: Reversibility

1 Introduction

Definition 1.1. A stochastic process X : () — XR is time reversible if the vector (Xt,,--.,Xt,) has the same
distribution as (Xt—_¢,,..., Xr—, ) for all finite positive integers n € IN, time instants t; <t, <--- <t; € R
and shifts T € R.

Lemma 1.2. A time reversible process is stationary.

Proof. It suffices to show that for any shift s € R, finite # € N, and time instants {; < --- <t, € R, the ran-
dom vectors (Xy,,...,Xt,) and (Xs1+t,, ..., Xs4+,) have identical distribution regardless of s. This follows
from time reversibility of X, since both (Xy,,...,X;,) and (Xsi¢,,..., Xs++,) have the same distribution
as (X_¢,,...,X_¢,), by taking T = 0 and T = —s respectively. O

Theorem 1.3. A time-homogeneous Markov process X : Q) — XR with countable state space X and probability
transition kernel P: R+ — M (X)™ is time reversible iff it is stationary and there exists 1 € M (X) that satisfies
the detailed balanced conditions for all states x,y € X and times t € R,

Tty Pry (t) = 71 Py (t). (1)
When such a distribution 7t exists, it is the invariant distribution of the process.

Proof. We assume that the process X is time reversible, and hence stationary. We denote the stationary
distribution by 77 € M(X), and by time reversibility of X for T = 2s + ¢, we have

Pr{Xs =x,Xsyt =y} = Pr{Xs =y, Xsyt = x}.

Hence, we obtain the detailed balanced conditions in Eq. (I).

Conversely, let 7t be the distribution that satisfies the detailed balanced conditions in Eq. , then
summing up both sides over y € X, we see that 7 is the invariant distribution for Markov process X.
Let x € X', then applying detailed balanced equations in Eq. (1)) repeatedly, we can write

ﬂ(x])lexZ(tz — tl) ...meilxm(tm — tmfl) = n(xm)mean(tm — l’mfl) ...Pxel(tz — tl)-

For the time homogeneous stationary Markov process X, it follows that for all ) € R

Pr ( Nty { Xy = xi}) = P ( MLy Xttt —t; = i} )

Since m € N and t,t1,...,t, were arbitrary, the time reversibility follows for all T = tg + t;,. O

1.1 Reversible chains

Corollary 1.4. A stationary time-homogeneous discrete time Markov chain X : Q0 — X% with transition matrix
P € M(X)* is time reversible iff there exists 1 € M(X) that satisfies the detailed balanced conditions for all
states x,y € X,

Tty Py = 70y Py 2)

When such a distribution 7 exists, it is the invariant distribution of the process.



Example 1.5 (Random walks on edge-weighted graphs). Consider an undirected graph G = (X,E)
with the vertex set X and the edge set E C (32C ) being a subset of unordered pairs of elements from X. We
say that y is a neighbor of x, if e = {x,y} € E and denote x ~ y. We assume a function w : E — R, such
that w, is a positive number associated with each edge e = {x,y} € E. Let X, € X denote the location of
a particle on one of the graph vertices at the nth time-step. Consider the following random discrete time
movement of a particle on this graph from one vertex to another. If the particle is currently at vertex x
then it will next move to vertex y with probability

PG, & P({(Xns1 =y} (¥ = ) = sl ().

The Markov chain X : Q — XN describing the sequence of vertices visited by the particle is a random
walk on an undirected edge-weighted graph. Google’s PageRank algorithm, to estimate the relative
importance of webpages, is essentially a random walk on a directed graph!

Proposition 1.6. Consider an irreducible time-homogeneous Markov chain X : Q0 — X% that describes the ran-
dom walk on an edge weighted graph with a finite number of vertices. In steady state, this Markov chain is time
reversible with stationary probability of being in a state x € X given by

R y: weHE(X)'

Tl = 3
x 2% ey (3)

Proof. Using the definition of transition probabilities for this Markov chain and the given distribution
€ M(X) defined in (3), we notice that

w w
m PS — kg x,y}), T Pi:%]l x,y}).
by sy e({xu}) VB = O cpu; e({xu})

Hence, the detailed balance equation for each pair of states x,y € X is satisfied, and the result follows.
O

We can also show the following dual result.

Lemma 1.7. Consider a time reversible Markov chain X : Q — X% on a finite state space X and transition
probability matrix P € M(X)>. Then, there exists a random walk on a weighted, undirected graph G with the
same transition probability matrix P.

Proof. Since X is time reversible, it is stationary and has a positive invariant distribution 7 € M (X)
such that 7ty Py, = 71, Pyx for each (x,y) € X2. This implies that Py, > 0 iff Py > 0, and thus we can
create a graph G = (X, E), where

= {{x,y} € (3;) S BlBy, > o}.

For each edge {x,y} € E, we set the edge weights wy, .1 £ 714 Pyy = 1, Py. With this choice of weights, it
is easy to check that wy £ Y_,cpw,1,(x) = 7y, and the transition matrix associated with a random walk
on this graph is exactly P with Pfy = Zeu} Pyy. O

Wy

Is every Markov chain time reversible?
Let X : QO — X% be a time homogeneous discrete time Markov chain with probability transition matrix
Pe M(X)X.

1. If the process is not stationary, then no. To see this, we observe that

P{Xt, =x1,Xt, =x2} =1 (X1) Py (2 — 1), P{Xe—t, = %0, Xe—t; = X1} = Vet (X2) Payy (£2 — 7).

If the process is not stationary, the two probabilities can’t be equal for all times 7,1, t; and states
x1,x2 € X.

2. If the process is stationary, then it is still not true in general. Suppose we want to find a stationary
distribution « € M(X) that satisfies the detailed balance equations axPyy = ayPyy for all states
x,y € X. For any arbitrary Markov chain X, one may not end up getting any solution. To see this



consider a path x — y — z such that Py, P, P;x > 0. Time reversibility condition implies that
lxxpxypyzpzx = “xpxzpzypyx-

. . P.yP . .
However, this would imply that 55~ = £, which is not true in general. Thus, we see that a
xylyz Xz

necessary condition for time reversibility is PyyPyzPzx = Pyz Pz Pyy forall x,y,z € X.
Theorem 1.8 (Kolmogorov’s criterion for time reversibility of Markov chains). A stationary Markov

chain X : Q — X?Z is time reversible if and only if starting in state xo € X, any path back to state xo has the same
probability as the time reversed path, for all initial states xo € X. That is, for any n € IN and state vector x € X"

Pyox; Pryxy - Prpxg = Prgxp Prpxy_q -+ Pryxg- 4)

Proof. The detailed balance equation for a time reversible Markov process X implies that (4) holds for
any finite set of states. Conversely, if (4) holds for any non-negative integer n € IN, then for any states
x0,y € X, we have

n+1 _ _ _ n+1
(P DxyPrvo= Y. Pov--PuyPro= Y, ProyPrau---Prixo = Paoy (P )yae-
X1,X2,-+-Xn X1,X2,--Xn

Taking the limit # — oo and noticing that lim, . (P") xy = 7ty for all x,y € X, we observe that X is a
time-reversible process. O

1.2 Reversible Processes

Corollary 1.9. A stationary Markov process X : QO — XR with generator matrix Q € RX*X is time reversible
iff there exists a probability distribution 7t € M(X), that satisfies the detailed balanced conditions

nxQxy = nyny/ x,y €X. &)
When such a distribution 7t exists, it is the invariant distribution of the process.

Definition 1.10. Consider a stationary time-homogeneous Markov process X : QO — XR with invariant
distribution 7t € M(X) and the generator matrix Q € R**X, We denote the total number of transitions
from state x to state y in the time duration (0,t]| by

X
N;Y £ NY(0,1] & Zﬂ;\IiOt W)Lz, —xZ=y}-
ne

The probability flux from state x to state y is defined as @y, = lim e %Ntx Y
Lemma 1.11. For a time-homogeneous CTMC X, the probability flux from state x to state y is 71xQxy.

Proof. Let Xo = x and 7, (k) be the kth visiting time to state x. It follows that 7,7 : O — RY is a renewal

sequence. We consider the reward process NV : () — ZE* where Ntx ¥ is the number of transitions from
state x to y in the duration (0, t]. We denote the total number of transitions from state x to state y in the
kth inter-renewal duration by

N (k) &£ NY (7t (k—1), £y Lt k1), k)](Sn)IL{Znillezn:y}.
nelN
The number of visit to all states y € X during kth successive visit to state x € X is the number of tran-
sitions during (77 (k — 1), 77 (k)], and we denote this number as N*(k) £ ¥, o Lot (k1) e (k)] (Sn)-
From the renewal reward theorem for the embedded DTMC Z : Q — X%+ with invariant distribution
u € M(X), we can write the average number of one-step transitions from state x to y as

1 N~V (k)
iy = I L Hamntmn) = gy BN 0
n=
It follows that ExN*Y (k) = pyy and recall that E,7;f (1) = nlv From the renewal reward theorem

applied to reward process N*¥ and renewal sequence T;, we obtain

lim —— = —————= = MyVx Py = MTxQuy-



Lemma 1.12. For a stationary time-homogeneous Markov process X : Q — XR, probability flux balances across

acut A C X, that is
Y. ) Q=) ) myQux.

yEAxXEA XEAYZA

Proof. Let A C X, and denote the number of visits from states in A to states in A¢ in the interval (0, ]
and probability flux from A — A€ as

1
N2 Y YN, M = Y Y @y, = lim SN
yZAYEA yZAYEA too f

By definition of probability flux across cut A, it suffice to show that ‘NtA’AE — NtAE'A < 1, which follows

from the observe that the difference NtA'AC — NtAC'A = lixyea) — Lix,¢a) forany time t € Ry. O

Corollary 1.13. For A = {x}, the above equation reduces to the full balance equation for state x, i.e.,
Y, Qe = ), myQyx.

yiy#x yiy#x

Definition 1.14. A time-homogeneous Markov process X : (2 — ZE* is called a birth-death process if
its generator matrix satisfies Qy,, = 0 for all states x,y € Z such that [y — x| > 1. We define two non-
negative sequences birth and death rates denoted by A € RZ and y € RY, such that foralln € N

)\n £ Qn—l,nr Un £ Qn,n—l-
Proposition 1.15. An ergodic birth-death process in steady-state is time-reversible.

Proof. Since the process is stationary, the probability flux must balance across any cut of the form A =
{0,1,2,...,n}, for n € Z. Since there are no other transitions possible across the cut, this is precisely
the set of detailed balance equations 7t,A; = 71, 111y,+1 for each state n € Z, and hence the process is
time-reversible. O

In fact, the following, more general, statement can be proven using similar ideas.

Proposition 1.16. Consider an irreducible and ergodic Markov process X : Q) — X on a countable state space X
with generator matrix Q € R*X having the following property. For any pair of states x # y € X, the transition
graph has a unique path x = xo — X1 — -+ = Xy(yy) =Y ANA Y = Xy (y,) = Xy—1 = -+ — Xo = x of distinct
states. Then the process X is time reversible at stationarity.

Proof. Let the stationary distribution of X be 7w € M(X), such that 7Q = 0. We fix a state x € X, and

define the set of states connected to x as By = {y € X : Qy, > 0}. By theorem hypothesis, for each y € B,
we have a unique path x — y and y — x, and thus we have Q,x > 0 as well. For any y ¢ By, the detailed
balance equation is satisfied trivially for each pair (x,y). Let y € By, then we can define

Axy = {z € X : z connected to x via y}.

By definition of Ay,, we have a path x =y — z for any z € Ayy. From the hypothesis of unique paths,
we have x € Ayy. Further, since self transitions are not possible, y ¢ Ayy. Since Q is irreducible, each
state x is connected to every other state z € X \ {x}. Therefore, we observe that

A%y = {w € X: w connected to x not via y}.

We observe that x ¢ AS, and y € Ag,. Next, we consider a pair of states (z,w) such that z € Ay, \ {x}
and w € AY, \ {y}. In this case, if Q;, > 0, then we have two paths x — y — z — w and another path
from x to w without going via y, and that contradicts the hypothesis. It follows that Q, = Qu, = 0 for
all such pairs (z,w). This implies that there are no paths between Ay \ {x} and A3, \ {y}. From the
probability flux balance across cuts, we obtain the detailed balance equation

T Qxy = Z Z T2 Qz = Z Z T Quz = Ty Qyx.

w%Axy zeAxy zeAxy w%Axy

Since the choice of states x,y € X was arbitrary, the result follows. O

Exercise 1.17. Prove Corollary[I.4)and Corollary [1.9from Theorem
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