
Lecture-23: Queues

1 Continuous time queues

A queueing system consists of arriving entities buffered to get serviced by a collection of servers with
finite service capacity.

1.1 Notation

The notation A/T/N/B/S for a queueing system indicates different components.

A : stands for inter-arrival time distribution. Typical inter-arrival time distributions are general in-
dependent (GI) so that number of arrivals is a renewal counting process, memoryless (M) for
Poisson arrivals, phase-type (PH), or deterministic (D).

T : stands for service time distribution. Similar to inter-arrival time distribution, the typical service
time distributions are general independent (GI), memoryless (M) for exponential service times,
phase-type (PH), or deterministic (D).

N : stands for number of servers. The number of servers could be one, finite (N), or countably infinite
(∞).

B : stands for the buffer size, or the maximum number of entities waiting and in service at any time.
The buffer size is typically arbitrarily large (∞), or equal to the number of servers. If there is no
buffer size specified, then it is countably infinite by default.

S : stands for the queueing service discipline. Service discipline is usually first-come-first-served
(FCFS), last-come-first-served (LCFS), or priority-ordered with or without pre-emption, or processor-
shared (PS). If there is no queueing discipline specified, then it is FCFS by default.

Typical performance metrics of interest are the sojourn times averaged over each arriving entity, and the
number of entities in the queue as seen by an incoming arrival or outgoing departure from the system.

1.2 GI/GI/1 queue

A GI/GI/1 queue has i.i.d. inter-arrival time sequence, i.i.d. service time sequence, a single server, infi-
nite buffer size, and FCFS queueing discipline.

1.2.1 Fundamental processes

We denote the i.i.d. inter-arrival time sequence by ξ : Ω → RN
+ , where ξn is the time duration between

the (n − 1)th and the nth arrival. We assume that P{ξ1 > 0} = 1. The random service requirement
sequence is denoted by σ : Ω → RN

+ , where σn is the amount of service needed by nth arrival. The
arrival rate is denoted by λ ≜ 1/Eξ1, and the service rate is denoted by µ ≜ 1/Eσ1. The average load on
the system is denoted by ρ ≜ Eσn/Eξn = λ/µ. Inter-arrival time sequence ξ and service time sequence
σ are assumed to be independent.

1.2.2 Derived processes

Given the inter-arrival time and service time processes, the number of servers, the buffer size, and the
service discipline, we can derive arrival instant, departure instant, and waiting time sequence. We
denote the random sequence of arrival instants by A : Ω → RN

+ where An is the nth arrival instant
defined as

An ≜
n

∑
i=1

ξi.

1



Since the inter-arrival time sequence ξ is i.i.d. , it follows that arrival instant sequence A is a renewal
sequence. Since P{ξ1 > 0} = 1, the arrival point process A : RN

+ is simple. The waiting time sequence
is denoted by W : Ω → RN

+ where Wn is the waiting time of nth arrival. We define (x)+ ≜ x ∨ 0 and
assume the initial waiting time W0 ≜ w. For each n ∈ N, we can write the waiting time for nth arrival
before it receives service, as

Wn = (Wn−1 + σn−1 − ξn)+.

We define a step-size sequence X : Ω → RN for step-size n ∈ N as Xn ≜ σn−1 − ξn. We observe that
Wn = (Wn−1 + Xn)+ for each n ∈ N. Since σ and ξ are individually i.i.d. and independent, it follows
that X is an i.i.d. sequence, and hence W is a time homogeneous Markov sequence. Further, we can
define a random walk S : Ω → RN for each time n ∈ N as Sn ≜ ∑n

i=1 Xi. We note that waiting time
sequence is a reflected random walk. We denote the departure instant sequence by D : Ω → RN

+ where
Dn is the departure instant of nth arrival defined as

Dn ≜ An + Wn + σn.

1.2.3 Intermediate processes

The number of arrivals and departures in a time duration I ⊆ R+ are denoted by NA(I) and ND(I)
respectively. When the interval is (0, t] for some t ∈ R+, then we denote

NA
t ≜ NA(0, t] = ∑

n∈N

1{An⩽t}, ND
t ≜ ND(0, t] = ∑

n∈N

1{Dn⩽t}.

Since An ⩽ Dn, we have 1{Dn⩽t} ⩽ 1{An⩽t}, and hence ND
t ⩽ NA

t . The buffer occupancy process is

denoted by L : Ω → Z
R+
+ where Lt is the number of entities in the buffer at time t ∈ R+ is defined as

Lt ≜ ∑
n∈N

1[An ,Dn)(t) = ∑
n∈N

(1{An⩽t} − 1{Dn⩽t}) = NA
t − ND

t ⩾ 0.

We are interested in the long term average of waiting time W̄ for each arrival and the long term average
of buffer occupancy L̄, defined as

W̄ ≜ limsup
N→∞

1
N

N

∑
n=1

Wn, L̄ ≜ limsup
T→∞

1
T

∫ T

0
Ltdt.

1.3 Poisson arrivals see time averages (PASTA)

Consider a stochastic process X : Ω →XR+ and a homogeneous Poisson counting process N : Ω → Z
R+
+

with rate λ defined on the same probability space (Ω,F, P), such that Xt is the system state at time t and
Nt is the number of arrivals in the duration (0, t]. We define the natural filtration F• ≜ (Ft : t ∈ R+) for
the joint process (X, N), such that Ft ≜ σ(Xs, Ns, s ⩽ t) for all t ∈ R+.

Assumption 1.1 (Lack of anticipation (LAA)). Increment Ns − Nt is independent of Ft for all s ⩾ t.

Definition 1.2. Let B ∈ B(X) be a Borel measurable set. We define a left continuous with right limits
process U : Ω → {0,1}R+ for each time t ∈ R+ as Ut ≜ 1B(Xt−) = 1{Xt−∈B}. In term of U and counting

process N, we define two derived processes V,Y : Ω → R
R+
+ defined for each time t ∈ R+ as

Vt ≜
∫ t

0
Usds =

∫ t

0
1{Xs−∈B}ds, Yt ≜

∫ t

0
UsdNs = ∑

n∈N

1{An⩽t}1
{

XA−
n
∈B

} =
Nt

∑
n=1

1{
XA−

n
∈B

}.

The asymptotic time average of system being in state B is defined as

τ̄B ≜ lim
t→∞

1
t

∫ t

0
1{Xu−∈B}du = lim

t→∞

Vt

t
.

We define the asymptotic average of the system being in state B as seen by an arriving customer as

c̄B ≜ lim
N∈N

1
N

N

∑
n=1

1{
XA−

n
∈B

} = lim
t→∞

Yt

Nt
.
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Theorem 1.3 (PASTA). Under LAA assumption, τ̄B = c̄B almost surely.

Proof. We define a process R : Ω → RR+ for each time t ∈ R+ as Rt ≜ Yt − λVt. Since limt→∞
Nt
t = λ

almost surely, it suffices to show that limt→∞
Rt
t = 0 almost surely.

Step 1: We will show that R is a continuous time martingale. Specifically, we will show that E |Rt| < ∞
and E[Rt+h − Rt | Ft] = 0 for any t, h ∈ R+.

(a) Since Us ∈ {0,1} is an indicator function for all s ∈ R+, it follows that 0 ⩽ Vt ⩽ t and 0 ⩽
Yt ⩽ Nt. It follows that |Rt|⩽ Yt + λV(t)⩽ Nt + λt, and hence E |Rt|⩽ 2λt for all t ∈ R+.

(b) For each t, h ∈ R+ and n ∈ N, we define

Yn
t,h ≜

n−1

∑
k=0

Ut+ kh
n
(N

t+ (k+1)h
n

− Nt+ kh
n
) = Yt+h − Yt −

n−1

∑
k=0

∫ t+ (k+1)h
n

t+ kh
n

(Us − Ut+ kh
n
)dNs.

We can verify that
∣∣∣Yt+h − Yt − Yn

t,h

∣∣∣ < ∞ and limn∈N Ut+ kh
n
= Us for all s ∈ t + kh

n + [0, 1
n ].

Thus, exchanging limit and integration from dominated convergence theorem, we obtain
that limn∈N Yn

t,h = Yt+h − Yt almost surely. Since N is Poisson counting process it satisfies
LAA assumption. Together with this fact, and that the counting process N has rate λ, and
Us is Fs measurable, we get

E[Yn
t,h | Ft] = λE

[ h
n

n−1

∑
k=0

Ut+ kh
n
| Ft

]
.

Taking limit n ∈ N on both sides of the above equation, and applying dominated conver-
gence theorem to exchange limit and conditional expectation, we obtain

E[Yt+h −Yt |Ft] =E[ lim
n∈N

Yn
t,h |Ft] = lim

n∈N
E[Yn

t,h |Ft] = λE
[

lim
n∈N

h
n

n−1

∑
k=0

Ut+ kh
n
|Ft

]
= λE[Vt+h −Vt |Ft].

Step 2: We will show that limn→∞
Rnh

n = 0 almost surely. We fix h > 0 and define a discrete filtration
G• ≜ (Gn : n ∈ N) and a random sequence Q : Ω → RN where Gn ≜ Fnh and Qn ≜ Rnh − R(n−1)h
for all n ∈ N. We fix n ∈ N, and observe that

(a) σ(Rnh) ⊆ Gn,
(b) E |Rnh|⩽ E |Rnh|⩽ 2λnh, and
(c) E[Rnh | Gn−1] = E[Rnh | F(n−1)h] = R(n−1)h.

It follows that Q is a discrete time martingale difference sequence for martingale (Rnh : n ∈ Z+)
adapted to G•. Fix n ∈ N, and observe that Qn = (Ynh −Y(n−1)h)− λ(Vnh −V(n−1)h) where each
term is positive. Therefore,

Q2
n ⩽ (Ynh − Y(n−1)h)

2 + λ2(Vnh − V(n−1)h)
2 ⩽ (Nnh − N(n−1)h)

2 + λ2h2.

Taking expectation on both sides for each n ∈ N, and scaling with 1/n2 and summing over

all n ∈ N, we get E∑n∈N
Q2

n
n2 ⩽ λh(1 + 2λh)∑n∈N

1
n2 < ∞. It follows from Proposition A.2 that

limn→∞
Rnh

n = 0 almost surely.

Step 3: We will show that limt→∞
Rt
t = 0 almost surely. Let n ≜ ⌊ t

h ⌋+ 1, then t ∈ [(n − 1)h,nh). Since
Rt = Yt − λVt, we have Rt − Rs ⩾−λ(Vt − Vs) for all t > s and Vt − Vs ⩽ (t − s), we obtain

Rnh − Rt ⩾−λ(Vnh − Vt)⩾−λh, Rt − R(n−1)h ⩾−λ(Vt − V(n−1)h)⩾−λh.

Combining the two equations, we get R(n−1)h − λh ⩽ Rt ⩽ Rnh + λh. Dividing both sides of

the equation by t, taking limit t → ∞, and using the fact that limn∈N
Rnh

n = 0 almost surely, we
obtain the result.

Theorem 1.4 (Little’s law). For a GI/G/1 queue with ρ < 1, we have

lim
t→∞

1
t

∫ t

0
Ludu = λ lim

t→∞

∑
NA

t
i=1(Wi + σi)

NA
t

.

3



Proof. Recall that Lu = ∑n∈N1[An ,Dn)(u), and hence applying monotone convergence theorem to ex-
change integration and infinite sum, we obtain∫ t

0
Ludu = ∑

n∈N

∫ t

0
1[An ,Dn)(u)du = ∑

n∈N

1{Dn⩽t}

∫ t

0
1[An ,Dn)(u)du + ∑

n∈N

1{An⩽t<Dn}

∫ t

0
1[An ,Dn)(u)du.

Using the fact that Dn − An = Wn + σn for each n ∈ N, we can write this integral and bound it as

∑
n∈N

1{n⩽ND
t }(Wn +σn)⩽

∫ t

0
Ludu= ∑

n∈N

1{Dn⩽t}(Wn +σn)+ ∑
n∈N

1{An⩽t<Dn}(t− An)⩽ ∑
n∈N

1{n⩽NA
t }(Wn +σn).

Further, for a stable queue we have limt→∞
ND

t
t = limt→∞

NA
t
t = λ. It follows that

lim
t→∞

1
t

∫ t

0
Ludu = lim

t→∞

1
t

NA
t

∑
i=1

(Wi + σi) = lim
t→∞

NA
t
t

1
NA

t

NA
t

∑
i=1

(Wi + σi) = λ lim
t→∞

1
NA

t

NA
t

∑
i=1

(Wi + σi).

A Strong law of large number for martingale difference sequence

Definition A.1. Consider a martingale X : Ω → RZ+ adapted to filtration F• ≜ (Fn : n ∈ Z+). We define
the associated martingale difference sequence Y : Ω → RN as Yn ≜ Xn − Xn−1 for each n ∈ N.

Proposition A.2. Consider a martingale X and associated martingale difference sequence Y. If ∑n∈N
Y2

n
n2 < ∞,

then limn∈N
Xn
n = 0 almost surely.

Proof. We define another sequence Z : Ω → RZ+ adapted to F• where Z0 ≜ 0 and Zn ≜ ∑n
i=1

Yi
i for each

n ∈ N. We fix n ∈ N, and observe that
(a) σ(Zn) ⊆ Fn,
(b) E |Zn|⩽ ∑n

i=1
1
i E |Xn|+ E |Xn−1| < ∞, and

(c) E[Zn | Fn−1] = E[Zn−1 +
Yn
n | Fn−1] = Zn−1 since E[Yn | Fn−1] = 0.

It follows that Z is a martingale adapted to F• and

EZ2
n =

n

∑
i=1

1
i2

EY2
i + 2E∑

i>j

1
ij

E[YiYj | Fj] = E
n

∑
i=1

Y2
i

i2
.

From the hypothesis we have limn∈N EZ2
n < ∞. From martingale convergence theorem, limn∈N Zn =

Z∞ exists and is finite almost surely. Further, we observe that

Xn

n
=

1
n

n

∑
i=1

i
Yi
i
=

1
n

n

∑
i=1

i(Zi − Zi−1) =
1
n

( n

∑
i=1

iZi −
n−1

∑
i=0

(i + 1)Zi

)
= Zn −

1
n

n−1

∑
i=0

Zi.

The result follows from taking limit n → ∞ on both sides and the existence of almost sure Z∞.
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