Lecture-23: Queues

1 Continuous time queues

A queueing system consists of arriving entities buffered to get serviced by a collection of servers with
finite service capacity.

1.1 Notation
The notation A/T/N/B/S for a queueing system indicates different components.

A : stands for inter-arrival time distribution. Typical inter-arrival time distributions are general in-
dependent (GI) so that number of arrivals is a renewal counting process, memoryless (M) for
Poisson arrivals, phase-type (PH), or deterministic (D).

T : stands for service time distribution. Similar to inter-arrival time distribution, the typical service
time distributions are general independent (GI), memoryless (M) for exponential service times,
phase-type (PH), or deterministic (D).

N : stands for number of servers. The number of servers could be one, finite (N), or countably infinite

(0).

B : stands for the buffer size, or the maximum number of entities waiting and in service at any time.
The buffer size is typically arbitrarily large (o), or equal to the number of servers. If there is no
buffer size specified, then it is countably infinite by default.

S: stands for the queueing service discipline. Service discipline is usually first-come-first-served
(FCEFS), last-come-first-served (LCFS), or priority-ordered with or without pre-emption, or processor-
shared (PS). If there is no queueing discipline specified, then it is FCFS by default.

Typical performance metrics of interest are the sojourn times averaged over each arriving entity, and the
number of entities in the queue as seen by an incoming arrival or outgoing departure from the system.

1.2 GI/GI/1 queue

A GI/GI/1 queue has i.i.d. inter-arrival time sequence, i.i.d. service time sequence, a single server, infi-
nite buffer size, and FCFS queueing discipline.

1.2.1 Fundamental processes

We denote the i.i.d. inter-arrival time sequence by & : O — R, where ¢, is the time duration between
the (n — 1)th and the nth arrival. We assume that P{¢; >0} = 1. The random service requirement
sequence is denoted by o : Q — R, where 0, is the amount of service needed by nth arrival. The
arrival rate is denoted by A £ 1/IE¢], and the service rate is denoted by i £ 1/IEcy. The average load on
the system is denoted by p £ [Ec;, /E¢, = A/ . Inter-arrival time sequence ¢ and service time sequence
o are assumed to be independent.

1.2.2 Derived processes

Given the inter-arrival time and service time processes, the number of servers, the buffer size, and the
service discipline, we can derive arrival instant, departure instant, and waiting time sequence. We
denote the random sequence of arrival instants by A : Q — RY where A, is the nth arrival instant
defined as



Since the inter-arrival time sequence ¢ is i.i.d. , it follows that arrival instant sequence A is a renewal
sequence. Since P{&; > 0} = 1, the arrival point process A : RY is simple. The waiting time sequence

is denoted by W : Q — RN where W,, is the waiting time of nth arrival. We define (x)+ = x V 0 and

assume the initial waiting time Wy £ w. For each n € N, we can write the waiting time for nth arrival
before it receives service, as
Wi = (Wy—1 4 0n—1 = Gn)+-

We define a step-size sequence X : Q — RN for step-size n € N as X, £ 0,,_1 — &;. We observe that
Wy, = (W1 + X))+ for each n € N. Since ¢ and ¢ are individually i.i.d. and independent, it follows
that X is an i.i.d. sequence, and hence W is a time homogeneous Markov sequence. Further, we can
define a random walk S : O — RN for each time n € N as S, £ Yo' 1 Xi. We note that waiting time
sequence is a reflected random walk. We denote the departure instant sequence by D : QO — RY where
D, is the departure instant of nth arrival defined as

D, 2 A, + W, +0,.

1.2.3 Intermediate processes

The number of arrivals and departures in a time duration I C R, are denoted by N4 (I) and NP (I)
respectively. When the interval is (0, t] for some t € R, then we denote

Nt NA Of Z l{A,,gt}r ND £ ND 0, l’ 2 ]I{Dngt}
nelN nelN

Since A, < D, we have 1 (Dp<t) S <1 {An<t)s and hence ND N{‘. The buffer occupancy process is
denoted by L: Q) — zR + where L; is the number of entities in the buffer at time t € IR is defined as

L2 Y T, p,)() = Y (Iga,<iy — Lp,<y) = N{' = NP >0.
nelN nelN

We are interested in the long term average of waiting time W for each arrival and the long term average
of buffer occupancy L, defined as

T
= hmsup N : Z Wi, L: limsup% Ldt.
0

N—oo T—o00

1.3 Poisson arrivals see time averages (PASTA)

Consider a stochastic process X : ) — X®+ and a homogeneous Poisson counting process N : Q) — Zﬂf'
with rate A defined on the same probability space (Q2,F, P), such that X; is the system state at time t and

N is the number of arrivals in the duration (0,t]. We define the natural filtration Fo = (F; : t € Ry ) for
the joint process (X, N), such that F; £ 0(Xs,Ns,5 < t) forall t € Ry.

Assumption 1.1 (Lack of anticipation (LAA)). Increment Ny — N; is independent of F; for all s > ¢

Definition 1.2. Let B € B(X) be a Borel measurable set. We define a left continuous with right limits
process U : Q) — {0,1}®* for each time t € R as U; 2 1p(X,-) = ]I{X eB)- In term of U and counting
-

process N, we define two derived processes V,Y : () — IRIJi+ defined for each time t € R as

t ot Ni
v 2 / Usds = / 1 ds, v / UdNe= Y Tpa o ~Y1 .
o 1Py ey Lt en) = Bl )
The asymptotic time average of system being in state B is defined as
Vi
2 fim s o= fim 7

We define the asymptotic average of the system being in state B as seen by an arriving customer as

1 N
- A :
“B _131 N Z: 1{ A;eB}_}EE‘QNt‘



Theorem 1.3 (PASTA). Under LAA assumption, Tg = Cp almost surely.

Proof. We define a process R: () — RR+ for each time t € Ry as Ry £ Y; — AV} Since limy_se0 % =A
almost surely, it suffices to show that lim; ., 3 Ri — 0 almost surely.

Step 1: We will show that R is a continuous time martingale. Specifically, we will show that E |R;| < oo
and E[R;,; — R¢ | Ft] =0 for any t,h € Ry.

(a) Since Us € {0,1} is an indicator function for all s € R, it follows that 0 < V; <t and 0 <
Y; < N;. It follows that |[R¢| < Yi + AV(t) < N; + At, and hence E |Ry| < 2Af forall t € Ry
(b) Foreacht,h € Ry and n € IN, we define

1 t+ (k+l)
th - Z ut+kh (k+1) - Nt+@) =Y — Vi — Z " (Us t+kh )st
" k=0 n
We can verify that ‘Yt+h -Y;— Yt’fh < o0 and lim,,¢c L[H% =U, foralls e t+ % + [0, %}

Thus, exchanging limit and integration from dominated convergence theorem, we obtain
that lim,en Y}, = Yip — Yi almost surely. Since N is Poisson counting process it satisfies
LAA assumption. Together with this fact, and that the counting process N has rate A, and
U; is Fs measurable, we get

h n—1
Bl |9 = [} T U,y |7
=0

Taking limit # € IN on both sides of the above equation, and applying dominated conver-
gence theorem to exchange limit and conditional expectation, we obtain

hn —1
E[Yip, ~ Y| 5] = E[lim Y/}, | 9] = lim E[Y}},| 5] = AE lim ~ 2ut+kh|fﬂ] AE[Vyyy — Vi | Fi).

Step 2: We will show that lim;, e Rg" = 0 almost surely. We fix I > 0 and define a discrete filtration

Se 2 (G, :n € N) and a random sequence Q : () — RN where G, £ F,;, and Q, £ R,, — Riu—1yn
for all n € IN. We fix n € IN, and observe that

@) o(Ryp) € Gn,

(b) E|R,n| < E|R,y| < 2Anh, and

(© E[Run | Gu-1] =E[Run | Frn—1yn] = Rpn—ayn-

It follows that Q is a discrete time martingale difference sequence for martingale (R, :n € Z)

adapted to Gs. Fix n € N, and observe that Qu = (Y, — Y(—1)n) — M Vi — V(—1),) where each
term is positive. Therefore,

Q< Yo = Yiue1n)? + A2 (Vi = Vi 1yn)® < (N — Ney_pyp)> + A2H2,

Taking expectation on both sides for each n € IN, and scaling with 1/n? and summing over
all n € N, we get IEZneN S < AR(1 + 2Ah) YN — -7 < oo, It follows from Proposmonthat

lim,, 0 S20 = 0 almost surely.

Step 3: We will show that lim;_ % =0 almost surely. Letn = [£| +1, then t € [(n — 1)h,nh). Since
Ry =Yy — AV}, wehave Ry — Ry > —A(V; — V) forall £ > s and Vi — Vs < (f — s), we obtain

Rup — Re = —A(Viyy — Vi) > — A, R — Riy 1y = —A (Vi — V(,H)h) > —Ah.

Combining the two equations, we get R(,_1), — Ah < Rt < Ry, + Ah. Dividing both sides of

the equation by ¢, taking limit t — oo, and using the fact that lim,cn R}gh = (0 almost surely, we
obtain the result.

O
Theorem 1.4 (Little’s law). Fora GI/G/1 queue with p <1, we have

N
lim 1 Lydu=A hm M.

t—oc0 NtA



Proof. Recall that L, = Y,en1(4,,p,)(#), and hence applying monotone convergence theorem to ex-
change integration and infinite sum, we obtain

/ Ludu =} / La,p,) (u)du =} H{Dn@}/ La, p,) ()du+ 3 I{An<t<Dn}/ [An, D)

nelN nelN nelN

Using the fact that D, — A, = W,, + 0, for each n € IN, we can write this integral and bound it as

Z ]1{n<ND}(Wn+0-n / Ludu— 2 H{Dngt}(Wn+Un + 2 l{An<t<Dn}(t_An 2 ]l{n<NA}(Wn +UH)
nelN nelN nelN nelN

D A
Further, for a stable queue we have lim; 0 —- NZ =lim; 00 NC_ follows that

i=1 o t 1

A Strong law of large number for martingale difference sequence

Definition A.1. Consider a martingale X : ) — RZ+ adapted to filtration Fo £ (F, : 1 € Z.). We define
the associated martingale difference sequence Y : QO — RN as Y, £ X,, — X,,_ for each n € N.

2
Proposition A.2. Consider a martingale X and associated martingale difference sequence Y. If ¥, e Z—g < 0o,
then lim,, N % = 0 almost surely.

Proof. We define another sequence Z : ) — R%+ adapted to Fo where Zg 2 0 and Z, = ll for each
n € IN. We fix n € IN, and observe that

(a) U'(Zn> C Ty,

() E|Z,] < T 1 X, |+ E[X,-1] < oo, and

(c) ]E[Zn | 9'.”,1] IE[Zn,1 + n" | ?nfl] = Z,_1 since ]E[Yn | 5"«”,1} =0.

It follows that Z is a martingale adapted to J, and

n
EZ2 = ]EY2+2]E E[Y;Y;| 5] =E .
n g gj IZ: Z2

From the hypothesis we have lim,cIEZ2 < co. From martingale convergence theorem, lim,cn Z, =
Z exists and is finite almost surely. Further, we observe that

X 1&Y; 1¢
—=—) i—= Z—Z Zi— 1 Z;.
n ngli nl;( 1) (Zl ;H_) ) 2
The result follows from taking limit n — oo on both sides and the existence of almost sure Z.. O



	Continuous time queues
	Notation
	GI/GI/1 queue
	Fundamental processes
	Derived processes
	Intermediate processes

	Poisson arrivals see time averages (PASTA)

	Strong law of large number for martingale difference sequence

