Lecture-24: Reversed Processes

1 M/M/1 queue

The M/M/1 queue is the simplest and most studied models of queueing systems. We assume a

continuous-time queueing model with following components.

(a) There is a single queue for waiting that can accommodate arbitrarily large number of customers.

(b) Arrivals to the queue occur according to a Poisson process with rate A > 0. That is, let A, be the
arrival instant of the nth customer, then the sequence of inter-arrival times ¢ is i.i.d. exponentially
distributed with rate A.

(c) There is a single server and the service time of nth arrival is denoted by a random variable ¢;,. The
sequence of service times o : 0 — RY is i.i.d. exponentially distributed with rate y > 0, independent
of the Poisson arrival process.

(d) We assume that arrivals join the tail of the queue, and hence begin service in the order that they
arrive first-in-queue-first-out (FIFO).

Let L; denote the number of entities in the system at time ¢ € R}, where “system” means the queue

plus the service area. For example, L; = 2 means that there is one entity in service and one waiting in

line.

1.1 Transition rates

Since the inter-arrival and the service times are memoryless, the residual time for next arrival Y/ is
identically distributed to &; and independent of past F; and residual service time Y? for entity in service
is identically distributed to 71 and independent of past J;. We observe that L; remains unchanged in the
time ¢ + [0, min {YtA,YtS }) for Ly > 1. In particular, L can have a unit increase if YtA < YtS corresponding
to an arrival, and a unit decrease for L; > 1 if YtA < Yts corresponding to a departure. If L; = 0, there
can be no service and L; remains 0 until f + Y2, and has a unit increase at time f + YtA. It follows
that L: Q) — ZE* is a right continuous process with left limits, and is piece-wise constant. Since inter-
arrival and service times are independent, it follows that sojourn time is exponentially distributed with
rate A + y for L; > 0 and rate A for Ly = 0. The probability of increase in L; after the end of sojourn time,
is unity for Ly =0, and P {YtA < Yts} = AA—V for L; > 0. It follows that L is a time homogeneous CTMC,

+
and we can write the corresponding generator matrix as

Q(n,m) = /Ul{m—nzl} + Vll{n—mzl,m20}'

We observe that Q(n,n) = —(A + u) for n € N and Q(0,0) = —A. It follows that M/M/1 queue occu-
pancy is an irreducible CTMC.

1.2 Equilibrium distribution and reversibility

Recall that the system load p = % = % < 1 for a stable queue. We can find the invariant distribution

m e M(Z+) of time homogeneous CTMC L, by solving the global balance equation 77 = wQ which
gives

nnlenfl,n + 77:n+1Qn+l,n = =71, Qun, 7T1Q1,0 = —7119Q00-

Taking the discrete Fourier transform I'l(z) = Y_,,cz, z" 71, of the distribution 77, we get

ZATI(2) + 2 u(T1(z) — 71(0)) = (A + u)I1(z) — ur(0).

Since z # 1, we obtain I1(z) = % = 710 Lnez, P"zn, and it follows that 71, = 7pp" for eachn € Z.,.

Since }_,,cz, (n) =1, we obtain 1g =1 — p for p < 1.



Example 1.1 (M/M/1 queue). From the generator matrix for the number of entities L : QO — ZR in
an M/M/1 queue, we observe that it is a birth-death process. Hence, this time homogeneous CTMC
is time-reversible at stationarity, with the equilibrium distribution 77 € M(Z.) satisfying the detailed
balance equations 7t,A = 7,11 for each n € Z. This yields 7,11 = p7ry, for the system load p = % =
A Since Ynez., T =1, we must have p <1, such that 77, = (1 — p)p" for each n € Z .. In other words,
if A <y, then the equilibrium distribution of the number of customers in the system is geometric with

parameter p = % We say that the M/M/1 queue is in the stable regime when p < 1.

Corollary 1.2. The number of customers in a stable M/M/1 queueing system at equilibrium is a reversible
Markov process.

Theorem 1.3 (Burke). Departures from a stable M/M/1 queue are Poisson with same rate as the arrivals.

Exercise 1.4. Directly characterize the departure process from a stable M /M /1 queue at station-
arity.

2 Reversed Processes

Definition 2.1. Let X : Q — X7 be a stochastic process with index set T being an additive ordered group
such as R or Z. Then, X7 : O — X7T defined as Xf £ X,_;forall t € T is the time-reversed process of X
forsomet € T.

Remark 1. Note that a reversed process, doesn’t have to have the identical distribution to the original
process. For a reversible process X, the reversed process would have identical distribution.

Lemma 2.2. If X : QO — X7 is a Markov process, then the reversed process X© is also Markov for any T € T.

Proof. Let JF, be the natural filtration of the process X. From the Markov property of process X, for any
future event F € 0(X,, : u > t), pastevent H € 0(X; : s < t), states x,y € X, and times u,s > 0, we have

P(F[{Xi =y} N H) = P(F[{X: =y}).
Markov property of the reversed process follows from the observation, that

P(HN{X;=y})P(F|HN{X; =y})
P{X; =y} P(F[{Xi=y})

P(H|{Xi=y}NF) = =P(H [{X;i =y}).

O

Remark 2. Even if the forward process X is time-homogeneous, the reversed process need not be time-
homogeneous. For a non-stationary time-homogeneous Markov process, the reversed process is Markov
but not necessarily time-homogeneous.

Theorem 2.3. If X : QO — XR is an irreducible, positive recurrent, stationary, and time-homogeneous Markov
process with transition kernel P : Ry — M(X)* and invariant distribution 71 € M(X), then the reversed
process XT : Q) — XR is also irreducible, positive recurrent, stationary, and time-homogeneous Markov with the
same invariant distribution 7t nd a transition kernel P: Ry — M (X)* defined as

Pyy(t) 2 %Pyx(t)for all t € Ry, and states x,y € X. 1)

Further, for any finite sequence of states x € X", finite sequence of times t € R, such that t; <t, < --- <ty,,
and any shift T € R, we have P ( N Xy, = xl-}) =Py ( N, {X'Z = xi} )

Proof. We observe that )A(tTl = Xy, foralli e [n].
Step 1: We verify that P defined in (T) is a probability transition kernel. This follows from the fact that
(@) Pey(t) = 0 forall t € Ry, and (b) Lyexc Puy(t) = 7= Lyeor 7ty Pyx (t) = 1.



Step 2: We verify that 77 is an invariant distribution for P, since ¥ cxc 7tx Py (t) = 7ty Lyex Py (t) = 7y,
for all states y € X.

Step 3: We next verify that P defined in (1)) is the probability transition kernel for the reversed process
X*. Since the forward process is stationary and time-homogeneous, we can write the probability
transition kernel for the reversed process as

o o Po{Xe ts=y,Xes=x}  7Pylt)
P{X{s =y} [{XS =x}) = A ;ﬂt{;(Tj:;}s b_ Tyl .

TTx

This implies that the reversed process is time-homogeneous and has the probability transition
kernel P.

Step 4: From Step 2 and Step 3, it follows that 7t is the invariant distribution for the reversed process.
From the positive recurrence of forward process, it follows that 77, > 0 for all states x € X.
Hence, this shows the positive recurrence of the reversed process as well. From the stationarity
of forward process and definition of reversed process, it follows that the marginal distribution
for the reversed process at any time ¢ is 7.

Step 5: We next verify the irreducibility of P. Let x,y € X. From irreducibility of P, there exists t € R
such that Pyx(t) > 0. From positive recurrence of P, we have 7, > 0 for each state x € X. From
the definition of P in (T), it follows that Py, (t) > 0 and hence x — y. Since the choice of states
x,y € X was arbitrary, the irreducibility of the reversed process follows.

Step 6: Finally, we verify that Pn< N Xy, = xi}) = 1577< N, {XZ = xi} ) From the Markov prop-
erty of the underlying processes and definition of P, we can write Py ( N Xy, = xi}) as

n—1

n—1
ey [T Prvess (tin = ) = 70, [T By (= 1) — (T = ti11)) = B (0 { &7 =} ).
i=1 i=1

Step 7: From the stationarity of the forward process X, we see that the joint distributions of (Xy,, ..., Xt,)
and (Xsyt,...,Xs+t,) are identical for all s € T and any finite n € IN. It follows that X7 is also
stationary, since (}A(fn L. .,Xfl ) and (Xf e .,XZ +t1) have the identical distribution.

O

Remark 3. There is a subtle difference between reversed process and reversible process. Reversed pro-
cess has a different evolution probabilities than the forward process, whereas for the reversible process
the evolution probabilities are identical.

2.1 Reversed Markov Chain

Corollary 2.4. If X : QO — X7 is an irreducible, positive recurrent, stationary, time-homogeneous Markov chain
with transition matrix P € M(X) and invariant distribution 71 € M(X), then the reversed chain X : Q —
X% is an irreducible, positive recurrent, stationary, time-homogeneous Markov chain with the same invariant
distribution 7t, and transition matrix P defined as 13xy £ %Pyx, for all states x,y € X.

Corollary 2.5. Consider an irreducible Markov chain X : QO — X% with transition matrix P € M(X)>. If one
can find a positive distribution x € M(X) and other transition matrix P* € M(X)™ that satisfies the detailed
balance equation

wyPry = txyP;x )

for all states x,y € X, then P* is the transition matrix for the reversed chain and « is the invariant distribution
for both chains.

Proof. Summing both sides of the detailed balance equation () over x, we obtain that « is the invariant

aﬁ;"y , it follows that P* € M (X)™ is the transition matrix

of the the reversed chain and « is the invariant distribution of the reversed chain. O

distribution of the forward chain. Since Py, =

2.2 Reversed Markov Process

Corollary 2.6. If X : Q — XR is an irreducible, positive recurrent, stationary, time-homogeneous Markov pro-
cess with generator matrix Q and invariant distribution 7t, then the reversed process XT : Q — XR is also an
irreducible, positive recurrent, stationary, time-homogeneous Markov process with same invariant distribution 7t
and generator matrix Q defined as Qxy = %ny for all states x,y € X.



Corollary 2.7. Let Q € RY*X denote the rate matrix for an irreducible Markov process. If we can find Q* €
RX*X and a positive distribution 7 € M(X) such that for y # x € X, we have

nxQxy = nyQ;;x/ and Z Qxy = Z Q;y/
y#x y#x

then Q* is the rate matrix for the reversed Markov process and 1 is the invariant distribution for both processes.

3 Applications of Reversed Processes

3.1 Truncated Markov Processes

Definition 3.1. For a Markov process X : (0 — XR and a subset A C X the boundary of A is defined as
0AE{y¢ A:Qxy >0, forsomex € A}.

Example 3.2. Consider a birth-death process. Let A = {3,4}. Then, 0A = {2,5}.

Definition 3.3. Consider a transition rate matrix Q € R**¥ on the countable state space X. Given a

nonempty subset A C X, the truncation of Q to A is the transition rate matrix Q4 € RA*4, where for all
states x,y € A

QA é Qxyr y # X,
Yoo Leea\n) Qe y=2

Proposition 3.4. Suppose X : QO — XR is an irreducible, time-reversible Markov process on the countable state
space X, with generator matrix Q € R**¥ and positive invariant distribution T € M(X). Suppose the truncated
Markov process X4 to a set of states A C X with generator matrix Q4 is irreducible. Then, X4 : Q) — AR at
stationarity is time-reversible, with positive invariant distribution 7 € M(A) defined forally € A, as

Ty

Al
= =
Y ZXEA TTx

Proof. Tt is clear that 714 is a distribution on state space A. We must show the reversibility with this
distribution 4. That is, we must show nf Quy = 719q Qyx for all states x,y € A. However, this is true
since the original chain is time reversible. O

Example 3.5 (Limiting waiting room: M/M/1/K). Consider a variant of the M/M/1 queueing system
with load p £ % that has a finite buffer capacity of at most K customers. Thus, customers that arrive

when there are already K customers present are rejected. It follows that the CTMC for this system is
simply the M/M/1 CTMC truncated to the state space {0,1,...,K}, and so it must be time-reversible
with invariant distribution ,
1
m=—FL o<i<k

Z;(:o ol
Example 3.6 (Two queues with joint waiting room). Consider two independent M/M/1 queues with
arrival and service rates A; and y; respectively for i € [2]. Then, the joint distribution of two queues is

mt(ny,np) = (1—p1)py (1 — p2)py?, n1,ny € Zy.

Suppose both the queues are sharing a common waiting room, where if arriving customer finds R wait-
ing customer then it leaves. Defining A = {n S Z%r i1y +np < R}, we observe that the joint Markov
process is restricted to the set of states A, and the invariant distribution for the truncated Markov pro-
cess is

ei'py’
mt(ny,np) = 172 —, (i) € A
Z(ml,mz)eAp1 1%
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