
Lecture-24: Reversed Processes

1 M/M/1 queue

The M/M/1 queue is the simplest and most studied models of queueing systems. We assume a
continuous-time queueing model with following components.
(a) There is a single queue for waiting that can accommodate arbitrarily large number of customers.
(b) Arrivals to the queue occur according to a Poisson process with rate λ > 0. That is, let An be the

arrival instant of the nth customer, then the sequence of inter-arrival times ξ is i.i.d. exponentially
distributed with rate λ.

(c) There is a single server and the service time of nth arrival is denoted by a random variable σn. The
sequence of service times σ : Ω → RN

+ is i.i.d. exponentially distributed with rate µ > 0, independent
of the Poisson arrival process.

(d) We assume that arrivals join the tail of the queue, and hence begin service in the order that they
arrive first-in-queue-first-out (FIFO).

Let Lt denote the number of entities in the system at time t ∈ R+, where “system” means the queue
plus the service area. For example, Lt = 2 means that there is one entity in service and one waiting in
line.

1.1 Transition rates

Since the inter-arrival and the service times are memoryless, the residual time for next arrival YA
t is

identically distributed to ξ1 and independent of past Ft and residual service time YS
t for entity in service

is identically distributed to σ1 and independent of past Ft. We observe that Lt remains unchanged in the
time t + [0,min

{
YA

t ,YS
t
}
) for Lt ⩾ 1. In particular, Lt can have a unit increase if YA

t < YS
t corresponding

to an arrival, and a unit decrease for Lt ⩾ 1 if YA
t < YS

t corresponding to a departure. If Lt = 0, there
can be no service and Lt remains 0 until t + YA

t , and has a unit increase at time t + YA
t . It follows

that L : Ω → Z
R+
+ is a right continuous process with left limits, and is piece-wise constant. Since inter-

arrival and service times are independent, it follows that sojourn time is exponentially distributed with
rate λ + µ for Lt > 0 and rate λ for Lt = 0. The probability of increase in Lt after the end of sojourn time,
is unity for Lt = 0, and P

{
YA

t < YS
t
}
= λ

λ+µ for Lt > 0. It follows that L is a time homogeneous CTMC,
and we can write the corresponding generator matrix as

Q(n,m) = λ1{m−n=1} + µ1{n−m=1,m⩾0}.

We observe that Q(n,n) = −(λ + µ) for n ∈ N and Q(0,0) = −λ. It follows that M/M/1 queue occu-
pancy is an irreducible CTMC.

1.2 Equilibrium distribution and reversibility

Recall that the system load ρ ≜ Eσ1
Eξ1

= λ
µ < 1 for a stable queue. We can find the invariant distribution

π ∈ M(Z+) of time homogeneous CTMC L, by solving the global balance equation π = πQ which
gives

πn−1Qn−1,n + πn+1Qn+1,n = −πnQnn, π1Q1,0 = −π0Q00.

Taking the discrete Fourier transform Π(z) = ∑n∈Z+
znπn of the distribution π, we get

zλΠ(z) + z−1µ(Π(z)− π(0)) = (λ + µ)Π(z)− µπ(0).

Since z ̸= 1, we obtain Π(z) = π(0)
(1−zρ)

= π0 ∑n∈Z+
ρnzn, and it follows that πn = π0ρn for each n ∈ Z+.

Since ∑n∈Z+
π(n) = 1, we obtain π0 = 1 − ρ for ρ < 1.
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Example 1.1 (M/M/1 queue). From the generator matrix for the number of entities L : Ω → ZR
+ in

an M/M/1 queue, we observe that it is a birth-death process. Hence, this time homogeneous CTMC
is time-reversible at stationarity, with the equilibrium distribution π ∈ M(Z+) satisfying the detailed
balance equations πnλ = πn+1µ for each n ∈ Z+. This yields πn+1 = ρπn for the system load ρ = Eσ1

Eξ1
=

λ
µ . Since ∑n∈Z+

πn = 1, we must have ρ < 1, such that πn = (1 − ρ)ρn for each n ∈ Z+. In other words,
if λ < µ, then the equilibrium distribution of the number of customers in the system is geometric with
parameter ρ = λ

µ . We say that the M/M/1 queue is in the stable regime when ρ < 1.

Corollary 1.2. The number of customers in a stable M/M/1 queueing system at equilibrium is a reversible
Markov process.

Theorem 1.3 (Burke). Departures from a stable M/M/1 queue are Poisson with same rate as the arrivals.

Exercise 1.4. Directly characterize the departure process from a stable M/M/1 queue at station-
arity.

2 Reversed Processes

Definition 2.1. Let X : Ω →XT be a stochastic process with index set T being an additive ordered group
such as R or Z. Then, X̂τ : Ω → XT defined as X̂τ

t ≜ Xτ−t for all t ∈ T is the time-reversed process of X
for some τ ∈ T.

Remark 1. Note that a reversed process, doesn’t have to have the identical distribution to the original
process. For a reversible process X, the reversed process would have identical distribution.

Lemma 2.2. If X : Ω → XT is a Markov process, then the reversed process X̂τ is also Markov for any τ ∈ T.

Proof. Let F• be the natural filtration of the process X. From the Markov property of process X, for any
future event F ∈ σ(Xu : u > t), past event H ∈ σ(Xs : s < t), states x,y ∈ X, and times u, s > 0, we have

P(F | {Xt = y} ∩ H) = P(F | {Xt = y}).

Markov property of the reversed process follows from the observation, that

P(H | {Xt = y} ∩ F) =
P(H ∩ {Xt = y})P(F | H ∩ {Xt = y})

P{Xt = y}P(F | {Xt = y}) = P(H | {Xt = y}).

Remark 2. Even if the forward process X is time-homogeneous, the reversed process need not be time-
homogeneous. For a non-stationary time-homogeneous Markov process, the reversed process is Markov
but not necessarily time-homogeneous.

Theorem 2.3. If X : Ω → XR is an irreducible, positive recurrent, stationary, and time-homogeneous Markov
process with transition kernel P : R+ → M(X)X and invariant distribution π ∈ M(X), then the reversed
process X̂τ : Ω → XR is also irreducible, positive recurrent, stationary, and time-homogeneous Markov with the
same invariant distribution π nd a transition kernel P̂ : R+ →M(X)X defined as

P̂xy(t)≜
πy

πx
Pyx(t) for all t ∈ R+, and states x,y ∈ X. (1)

Further, for any finite sequence of states x ∈ Xn, finite sequence of times t ∈ Rn
+ such that t1 < t2 < · · · < tn,

and any shift τ ∈ R, we have Pπ

(
∩n

i=1 {Xti = xi}
)
= P̂π

(
∩n

i=1

{
X̂τ

ti
= xi

})
.

Proof. We observe that X̂τ
ti
= Xτ−ti for all i ∈ [n].

Step 1: We verify that P̂ defined in (1) is a probability transition kernel. This follows from the fact that
(a) P̂xy(t)⩾ 0 for all t ∈ R+, and (b) ∑y∈X P̂xy(t) = 1

πx
∑y∈X πyPyx(t) = 1.
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Step 2: We verify that π is an invariant distribution for P̂, since ∑x∈X πx P̂xy(t) = πy ∑x∈X Pyx(t) = πy,
for all states y ∈ X.

Step 3: We next verify that P̂ defined in (1) is the probability transition kernel for the reversed process
X̂τ . Since the forward process is stationary and time-homogeneous, we can write the probability
transition kernel for the reversed process as

P(
{

X̂τ
t+s = y

}
|
{

X̂τ
s = x

}
) =

Pπ {Xτ−t−s = y, Xτ−s = x}
Pπ {Xτ−s = x} =

πyPyx(t)
πx

.

This implies that the reversed process is time-homogeneous and has the probability transition
kernel P̂.

Step 4: From Step 2 and Step 3, it follows that π is the invariant distribution for the reversed process.
From the positive recurrence of forward process, it follows that πx > 0 for all states x ∈ X.
Hence, this shows the positive recurrence of the reversed process as well. From the stationarity
of forward process and definition of reversed process, it follows that the marginal distribution
for the reversed process at any time t is π.

Step 5: We next verify the irreducibility of P̂. Let x,y ∈ X. From irreducibility of P, there exists t ∈ R+

such that Pyx(t) > 0. From positive recurrence of P, we have πx > 0 for each state x ∈ X. From
the definition of P̂ in (1), it follows that P̂xy(t) > 0 and hence x → y. Since the choice of states
x,y ∈ X was arbitrary, the irreducibility of the reversed process follows.

Step 6: Finally, we verify that Pπ

(
∩n

i=1 {Xti = xi}
)
= P̂π

(
∩n

i=1

{
X̂τ

ti
= xi

})
. From the Markov prop-

erty of the underlying processes and definition of P̂, we can write Pπ

(
∩n

i=1 {Xti = xi}
)

as

πx1

n−1

∏
i=1

Pxixi+1(ti+1 − ti) = πxn

n−1

∏
i=1

P̂xi+1xi ((τ − ti)− (τ − ti+1)) = P̂π

(
∩n

i=1

{
X̂τ

ti
= xi

})
.

Step 7: From the stationarity of the forward process X, we see that the joint distributions of (Xt1 , . . . , Xtn)

and (Xs+t1 , . . . , Xs+tn) are identical for all s ∈ T and any finite n ∈ N. It follows that X̂τ is also
stationary, since (X̂τ

tn
, . . . , X̂τ

t1
) and (X̂τ

s+tn
, . . . , X̂τ

s+t1
) have the identical distribution.

Remark 3. There is a subtle difference between reversed process and reversible process. Reversed pro-
cess has a different evolution probabilities than the forward process, whereas for the reversible process
the evolution probabilities are identical.

2.1 Reversed Markov Chain

Corollary 2.4. If X : Ω → XZ is an irreducible, positive recurrent, stationary, time-homogeneous Markov chain
with transition matrix P ∈ M(X)X and invariant distribution π ∈ M(X), then the reversed chain X̂τ : Ω →
XZ is an irreducible, positive recurrent, stationary, time-homogeneous Markov chain with the same invariant
distribution π, and transition matrix P̂ defined as P̂xy ≜

πy
πx

Pyx, for all states x,y ∈ X.

Corollary 2.5. Consider an irreducible Markov chain X : Ω → XZ with transition matrix P ∈M(X)X. If one
can find a positive distribution α ∈ M(X) and other transition matrix P∗ ∈ M(X)X that satisfies the detailed
balance equation

αxPxy = αyP∗
yx (2)

for all states x,y ∈ X, then P∗ is the transition matrix for the reversed chain and α is the invariant distribution
for both chains.

Proof. Summing both sides of the detailed balance equation (2) over x, we obtain that α is the invariant
distribution of the forward chain. Since P∗

yx =
αx Pxy

αy
, it follows that P∗ ∈M(X)X is the transition matrix

of the the reversed chain and α is the invariant distribution of the reversed chain.

2.2 Reversed Markov Process

Corollary 2.6. If X : Ω → XR is an irreducible, positive recurrent, stationary, time-homogeneous Markov pro-
cess with generator matrix Q and invariant distribution π, then the reversed process X̂τ : Ω → XR is also an
irreducible, positive recurrent, stationary, time-homogeneous Markov process with same invariant distribution π

and generator matrix Q̂ defined as Q̂xy ≜
πy
πx

Qyx for all states x,y ∈ X.
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Corollary 2.7. Let Q ∈ RX×X denote the rate matrix for an irreducible Markov process. If we can find Q∗ ∈
RX×X and a positive distribution π ∈M(X) such that for y ̸= x ∈ X, we have

πxQxy = πyQ∗
yx, and ∑

y ̸=x
Qxy = ∑

y ̸=x
Q∗

xy,

then Q∗ is the rate matrix for the reversed Markov process and π is the invariant distribution for both processes.

3 Applications of Reversed Processes

3.1 Truncated Markov Processes

Definition 3.1. For a Markov process X : Ω → XR, and a subset A ⊆ X the boundary of A is defined as

∂A ≜
{

y /∈ A : Qxy > 0, for some x ∈ A
}

.

Example 3.2. Consider a birth-death process. Let A = {3,4}. Then, ∂A = {2,5}.

Definition 3.3. Consider a transition rate matrix Q ∈ RX×X on the countable state space X. Given a
nonempty subset A ⊆ X, the truncation of Q to A is the transition rate matrix QA ∈ RA×A, where for all
states x,y ∈ A

QA
xy ≜

{
Qxy, y ̸= x,
−∑z∈A\{x} Qxz, y = x.

Proposition 3.4. Suppose X : Ω → XR is an irreducible, time-reversible Markov process on the countable state
space X, with generator matrix Q∈RX×X and positive invariant distribution π ∈M(X). Suppose the truncated
Markov process XA to a set of states A ⊆ X with generator matrix QA is irreducible. Then, XA : Ω → AR at
stationarity is time-reversible, with positive invariant distribution πA ∈M(A) defined for all y ∈ A, as

πA
y ≜

πy

∑x∈A πx
.

Proof. It is clear that πA is a distribution on state space A. We must show the reversibility with this
distribution πA. That is, we must show πA

x Qxy = πA
y Qyx for all states x,y ∈ A. However, this is true

since the original chain is time reversible.

Example 3.5 (Limiting waiting room: M/M/1/K). Consider a variant of the M/M/1 queueing system
with load ρ ≜ λ

µ that has a finite buffer capacity of at most K customers. Thus, customers that arrive
when there are already K customers present are rejected. It follows that the CTMC for this system is
simply the M/M/1 CTMC truncated to the state space {0,1, . . . ,K}, and so it must be time-reversible
with invariant distribution

πi =
ρi

∑k
j=0 ρj

, 0 ⩽ i ⩽ k.

Example 3.6 (Two queues with joint waiting room). Consider two independent M/M/1 queues with
arrival and service rates λi and µi respectively for i ∈ [2]. Then, the joint distribution of two queues is

π(n1,n2) = (1 − ρ1)ρ
n1
1 (1 − ρ2)ρ

n2
2 , n1,n2 ∈ Z+.

Suppose both the queues are sharing a common waiting room, where if arriving customer finds R wait-
ing customer then it leaves. Defining A ≜

{
n ∈ Z2

+ : n1 + n2 ⩽ R
}

, we observe that the joint Markov
process is restricted to the set of states A, and the invariant distribution for the truncated Markov pro-
cess is

π(n1,n2) =
ρn1

1 ρn2
2

∑(m1,m2)∈A ρm1
1 ρm2

2
, (n1,n2) ∈ A.
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