
Lecture-25: Queueing Networks

1 Migration Processes

Corollary 1.1. Consider an M/M/s queue with Poisson arrivals of rate λ and each server having independent
and exponential service of rate µ. If λ < sµ, then the output process in steady state is also Poisson with rate λ.

Proof. Let Xt denote the number of entities in the system at time t. Since M/M/s process is a birth and
death process, it follows from the previous proposition that X : Ω →ZR

+ is time reversible at stationarity.
The stationarity of the forward process holds only if the queue is stable, i.e. λ < sµ.

Going forward in time, the time instants at which Xt increases by unity are the arrival instants of a
Poisson process. Hence, by time reversibility, the time points at which Xt increases by unity when we
go backwards in time also constitutes a Poisson process. But these instants are exactly the departure
instants of the forward process. Hence, the result holds when λ < sµ.

Lemma 1.2. For an ergodic M/M/1 queue in steady state, the following are true.
(a) The number of entities present in the system at time t is independent of the sequence of past departures.
(b) For FCFS service discipline, the sojourn time in the system (waiting in the queue plus the service time) by an

entity is independent of the departure process prior to its departure.

Proof. Recall that the reversed process is an identical stochastic replica of the forward process.
(a) Since the arrival process is Poisson, the future arrivals are independent of the number of entities in

the system at the current instant. Looking backwards in time, future arrivals are the past departures.
Hence by time reversibility, the number of entities currently in the system are independent of the
past departures.

(b) Consider the case when an entity arrives into the system at time T1. The entity leaves at time
T2 > T1. Since the service discipline is assumed first come first serve and the arrival is Poisson, it
is seen that the sojourn time T2 − T1 is independent of the arrivals after T1. Looking backwards in
time, these are departures prior to the departure instant for the reversed process. Thus, from the
time reversibility, we see that the waiting time T2 − T1 of an entity is independent of the departures
prior to its departure.

2 Network of Queues

2.1 Tandem Queues

Time reversibility of M/M/s queues can be used to study what is called as a tandem or sequential
queueing system. For instance, consider a queueing system with two queues in sequence, with each
queue having one dedicated server. Service time of server i is random independent and distributed
exponentially with rate µi. Customers arrive to the queue 1 according to a Poisson process with rate
λ. After being served by server 1, entities join queue 2 for its service. Assume there is infinite waiting
room at both servers. Since the departure process of queue 1 is Poisson, as discussed previously, the
arrival process to queue 2 is also Poisson with rate λ. Time reversibility concept can be used to give a
much stronger result.

Theorem 2.1. For the ergodic tandem queue in steady state, the following are true.
(a) The limiting number of entities X1

∞, X2
∞ present at server 1 and server 2 respectively at stationarity, are

independent, and for s = 1

P
{

X1
∞ = n1, X2

∞ = n2)
}
= ρ1

n1(1 − ρ1)ρ2
n2(1 − ρ2).

(b) For FCFS discipline, the waiting time at server 1 is independent of the waiting time at server 2, at stationarity.
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Proof. Proofs follow by looking at reversed processes.
(a) By part (a) of previous lemma, the number of entities at server 1 at any time, is independent of the

past departures from server 1. However, the past departures are same as the arrival to server 2 until
this time. The past departures at server 1, in conjunction with the service times at server 2, deter-
mine the number of entities at server 2 at this time. This implies the independence of the number
of entities in both servers at any given time. The expression for the joint density follows from the
independence of two queues and the expression for the invariant distribution of an M/M/1 queue.

(b) By part (b) of the previous lemma, the waiting time of an entity at server 1 is independent of the past
departures from server 1 prior to its departure. The past departures at server 1, in conjunction with
the service times at server 2, determine entity’s waiting time at server 2. Hence the result follows.

2.2 Jackson Network

Consider a system of k queues each with a dedicated server with random independent service times
distributed exponentially with rate µi for server i ∈ [k]. We assume an infinite waiting time at each of
the k queues. To each queue, entities arrive from outside the system, according to a Poisson process
with rate ri. Once an entity is served at server i, the customer joins queue j with probability Pij, such
that ∑j∈[k] Pij ⩽ 1. The probability of the customer departing the system is 1 − ∑j∈[k] Pij. If we denote λj
as the total rate at which the entities join queue j, then λj can be obtained as a solution to

λj = rj + ∑
i∈[k]

λiPij, j ∈ [k].

We denote the number of entities in the queue i ∈ [k] at time t ∈ R by Xi(t) ∈ Z+. Denoting X(t) ≜
(X1(t), X2(t), . . . Xk(t)), one can show that X evolves as a continuous-time Markov chain. We focus on
this process at stationarity. That is, we analyze the k-queue system by a stationary continuous-time
Markov chain X : Ω → XR with state space X≜ Zk

+. Fix n ∈ Zk
+, then we are interested in computing

the joint invariant distribution

π(n)≜ lim
t→∞

P{X(t) = n} = lim
t→∞

P
(
∩k

i=1 {Xi(t) = ni}
)

.

From the tandem queue results, we expect the marginal queue occupancies to be independent random
variables. From the joint distribution, we can write the marginal distribution for each queue i ∈ [k] as

πi(mi)≜ lim
t→∞

P{Xi(t) = mi} = ∑
n∈Zk

+ :ni=mi

π(n).

Since, X is a CTMC, only a single transition takes place in any infinitesimal time interval. Let X(t) =
n ∈ Zk

+, then the possible transitions from this Markov process at time t ∈ R and the associated rates
are the following. We denote the unit vector in the ith direction by ei.

(i) An external arrival takes place in queue i, with rate

Q(n,n + ei) = ri.

(ii) If ni > 0, a service completes and an entity departs from queue i and joins queue j, with rate

Q(n,n − ei + ej) = µiPij.

(iii) If ni > 0, a service completes and an entity departs from queue i exiting the system, with rate

Q(n,n − ei) = µi(1 − ∑
j∈[k]

Pij).

Theorem 2.2. For each queue i ∈ [k], we define load ρi ≜ λi/µi such that ρi < 1, then the reversed stochastic
process is a network process of the same type as the original. That is, the reversed process X̂ is a CTMC with the
generator matrix Q∗ given by the following.
(a) The system has external Poisson arrivals to queue i at rate λi(1 − ∑j∈[k] Pij).
(b) The service times at queue i is i.i.d. exponential with rate µi.
(c) A departure from queue j goes to queue i with probability P̄ji defined as P̄ji ≜ λiPij/λj.
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(d) Each queue evolves as an independent M/M/1 queue with load ρi. That is, the joint invariant distribution
π ∈M(Zk

+) is defined as π(n)≜ ∏k
i=1 πi(ni) = ∏k

i=1 ρ
ni
i (1 − ρi) for each n ∈ Zk

+.

Proof. We observe the following for the reversed process.
(a) The arrival rate to any queue i ∈ [k] is Q∗(n,n + ei) = λi(1 − ∑j∈[k] Pij).
(b) If nj > 0, then the rate of joining a queue i after a service completion from queue j is

Q∗(n,n − ej + ei) = µj P̄ji =
µj

λj
λiPij.

(c) If nj > 0, then the rate of customer departing the system after service completion from server j is

Q∗(n,n − ej) = µj(1 − ∑
i∈[k]

P̄ji) =
µj

λj
(λj − ∑

i∈[k]
λiPij) =

µj

λj
rj.

It suffices to check that the detailed balanced conditions hold with the candidate generator matrix Q∗

for the reversed process, the candidate invariant distribution π, and any state n ∈ Zk
+.

1. We first focus at the detailed balance equations associated with the external arrivals

π(n)Q(n,n + ei) = π(n + ei)Q∗(n + ei,n).

Since Q(n,n + ei) = ri, Q∗(n + ei,n) =
ri
ρi

and the candidate invariant has a product form, we have
πi(ni + 1) = ρiπi(ni). That the detailed balance equations hold for these transitions.

2. Second for ni > 0, we look at the detailed balanced equations corresponding the transitions where
an entity joins queue j after getting service from queue i,

π(n)Q(n,n − ei + ej) = π(n − ei + ej)Q∗(n − ei + ej,n).

From the product form of the candidate invariant distribution π and the definition of Q and
candidate construction Q∗, we get that

πi(ni)πj(nj)µiPij = πi(ni − 1)πj(nj + 1)µj P̄ji, ni ∈ N.

From the candidate invariant distribution π and definition of P̄, the detailed balance equations
continue to hold for these transitions as well.

3. Finally for ni > 0, we look at the detailed balanced equations corresponding the exits from the
system from queue i,

π(n)Q(n,n − ei) = π(n − ei)Q∗(n − ei,n).

From the product form for invariant distribution π, we have for each ni ∈ N

πi(ni)µi(1 − ∑
j∈[k]

Pij) = πi(ni − 1)λi(1 − ∑
j∈[k]

Pij).

From the candidate invariant distribution π, the detailed balance equations continue to hold for
these transitions as well.

Corollary 2.3. The departure process for each server i ∈ [k] is an independent homogeneous Poisson process with
rate λi(1 − ∑j∈[k] Pij).

Proof. We have already shown that in the reversed process, entities arrive to queue i from outside the
system according to independent Poisson processes having rates λi(1 − ∑j∈[k] Pij) for i ∈ [k]. Since an
arrival from outside corresponds to a departure out of the system from queue i in the forward process,
the result follows.
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