Lecture-26: Martingales

1 Martingales

Definition 1.1. Let (Q),F,P) be a probability space. A filtration is an increasing sequence of o-fields
denoted by Fo = (F, C F: n € N), with nth o-field denoted by F,.

Definition 1.2. The natural filtration for a discrete time stochastic process X : O — RN is defined as
Fpn & 0(Xq,..., Xn)-

Definition 1.3. A random sequence X : O — RN of random variables is said to be adapted to the filtration
Fo if 0(X;,) C Fy, foralln € N.

Remark 1. For any random sequence X adapted to a filtration JF,, we also have (X3, ..., X,) C F, for
each n € N.

A martingale is a type of stochastic process whose definition formalizes the concept of a fair game.

Definition 1.4. A discrete stochastic process X : Q — RN is said to be a martingale with respect to the
filtration T, if it satisfies the following three properties for each n € IN,

i adaptability: o(X,) C Fp,
ii_ integrability: E|X,| < oo,
iii- unbiasedness: E[X, 11 | Fn] = Xu.

If the equality in third condition is replaced by < or >, then the process is called supermartingale or
submartingale, respectively.

Corollary 1.5. For a martingale X adapted to a filtration Fo, we have EX, = EX; for each n € IN.

Example 1.6 (Simple random walk). Let &, be the natural filtration of the random independent se-
quence ¢ : Q — RN with mean E¢ = 0 and E|&;| < oo for each i € N. ¢. Consider the random walk

X : Q — RN with step-size sequence ¢ such that X,, £ Y, & for each n € N. Then X is adapted to F.
Further, from the linearity of expectation and the finiteness of finitely many individual terms, we have
E|X,| <X, E|i| < oo for each n € IN. In addition, we have for each n € N,

E[Xy+1|Fn] = E[Xu + Ens1 | ] = Xn-
Thus, the random walk X is a martingale with respect to filtration J,.

Example 1.7 (Product martingale). Let JF, be the natural filtration of random independent sequence
&: QO — RN with mean E¢; = 1 and E |§;| < oo for each i € N. Consider the random sequence X : Q) —
RN defined as X, = [T, & for each n € N. Then X is adapted to J,. Further, from the independence
and finiteness of finitely many individual terms, we have E |X;| =[] E{; < oo for each n € N. In
addition, we have for each n € N,

E[Xy41|Fn] = E[Xnn41|Fn] = Xin.
Thus, the random sequence X is a martingale with respect to filtration F.

Example 1.8 (Branching process). Consider a population where each individual i can produce an inde-
pendent random number of offsprings Z; in its lifetime, with a common distribution P € M(Z. ) and

finite mean y £ Yjen jPj < oo. Let X, denote the size of the nth generation, which is same as the number



of offsprings generated by (n — 1)th generation. The discrete stochastic process X : O — Z%J’ is called a
branching process. Let Xy = 1 and consider the natural filtration J, of X. We define W : () — Z%* to be
a random walk with step-size sequence X such that W, £ Y- X; is the population until generation n

W1 Z; for each n € N.

for each n € Z . It follows that W is adapted to F and we can write X;, = Yitw, ,+1

For any n € IN, conditioning on JF;,_1 yields

Wy—1
E[Xu|Fual =E[ ). Zi|Foal =E[Y, Zidw, ,w, O | Fucal = Y ElZ; | Fualliw, ,w,_ )
i=W,_o+1 ieN ieN

From the definition of X, we observe that ¥, 1 C 0(Xy, Z1, .. "Zqu)f and since Z is an independent
sequence Z; is independent of F,,_1 for i > W,,_;. It follows that E[Z; | ,,_1] = EZ; = p fori > W,_1,
and hence E[X,, | F,_1] = uX,_1. Applying expectation on both sides, and by induction on 1, we get
E[X, | Fo] = Xop". Consider a positive random sequence Y : QO — R defined for eachn € N as Y;, £ %
Then, Y is adapted to JF,. Since X is a non-negative sequence, we have E[|Y,| | o] = E[Y, | Fo] = Xo.

Further, for each n € N
X
E[Xpi1 | Fu] = = =Y.

n

E[Y,11|F4] = an

It follows that Y is a martingale with respect to filtration J,.

Example 1.9 (Doob’s Martingale). Consider an arbitrary random sequence Y : Q — RN with associ-
ated natural filtration F,, and an arbitrary random variable Z : ) — R such that E |Z| < co. We define a
random sequence X : Q — RN as X, £ E[Z|F,] for each n € N. From the definition of conditional ex-
pectation, X is adapted to F,. Further, from the Jensen’s inequality for conditional expectation applied
to the convex absolute function, we get E |X,| < E[E[|Z| | F,]] = E|Z| < co. Further, from the tower
property of conditional expectation

E[Xy11(Fn] = E[E[Z|Fy11]|Fn] = E[Z]Fn] = Xu.
Thus, X is a martingale with respect to &, and called a Doob-type martingale.

Example 1.10 (Centralized Doob sequence). Let F, be the natural filtration for a random sequence
Y: O — RN with E |Yy| < oo for all n € N. For each n € N, we can define an associated centralized
zero mean random variable Y, — E[Y}, | F,,_1]. Hence, we can define a centralized zero mean sequence
X: 0 — RN foreachn € N, as X, = Y7, (Y; — E[Y; | F;_1]). By the definition of condition expectation
and filtration, the random sequence X is adapted to the filtration F,. From the triangle inequality and

the conditional Jensen’s inequality applied to convex absolute function, we get
n n n
E|X.| < Y E[Y, —E[Yi[F 1]/ < ) (]E Y;| + E[E[Y; | 33,1”) <2Y EY] < .
i=1 i=1 i=1
Further, from the linearity and the tower property of conditional expectation, we have

]E[Xn+1|3rn] = IE[XH + Yn+1 - IE[YH—H | ?n] | ?n] = X

Thus, X is a martingale with respect to this filtration JF,, and called centralized Doob martingale.

Lemma 1.11. Consider a martingale X : Q — RN adapted to a filtration Fo = (F, C F : n € N) defined on
the probability space (Q),F,P), and a convex function f : R — R such that E |f(X,,)| < oo for all n € IN. Then,

the random sequence Y : Q) — RN defined for each n € N as Y, = f(Xy,), is a submartingale with respect to the
filtration F.

Proof. We observe that Y is adapted to the filtration F, and integrable by hypothesis. From the condi-
tional Jensen’s inequality applied to convex function f, we get

E[f(Xu1) [ Fn] = f(E[Xup1 [ Fal) = f(Xa).



Corollary 1.12. Consider a random sequence X : QO — RN defined on the probability space (Q,F, P), with its
natural filtration Fo. Let a € R be a constant, and consider two random sequences Y : Q3 — RN and Z: O — RN
generated by X, such that for each n € N,

Yné(xn_”)+:(XnVﬂ)—ﬂ, 7,2 X, Aa.
i If X is a submartingale with respect to Fo, then so is Y with respect to F.

ii_ If X is a supermartingale with respect to Fo, then so is Z with respect to F.

Proof. Clearly, both sequences Y and Z are adapted to F,. Defining x — f(x) £ (x —a)+ and x
g(x) = x Aa for all x € R, we observe that f is convex and non-decreasing and g is concave and non-
decreasing. The function f is positive, and hence E|f(X,)| = Ef(X,) < E|X,| + |a] < co. We also
observe that E|g(X,)| < E|Xy| < co.

i From the conditional Jensen’s inequality applied to the convex non-decreasing function f and the
fact that B[X,11 | Fn] > X, we get E[f (Xui1) | Fnl 2 f(E[Xns1 | Fu) = f(Xn).

ii- From the conditional Jensen’s inequality applied to the concave non-decreasing function f and the
fact that IE[ Xy, 11 [ Fn] < X, we get E[g(Xt1) [ Fn] < g(E[Xnt1 [ Fnl) < g(Xn)-

O

1.1 Stopping Times
Consider a discrete filtration Fo = (5, CF:n € Z,).

Definition 1.13. A positive integer valued, possibly infinite, random variable 7: () —IN U {o0} is said to
be a random time with respect to the filtration F,, if the event {71 =n} € F, foreachn e N. If P{7 < o0} =
1, then the random time 7 is said to be a stopping time.

Definition 1.14. A random sequence H : Q) — RN is predictable with respect to the the filtration ., if
o(Hy) € 3,1 for each n € N. For a process X adapted to F., we define

(H-X), = i Hy (X — Xpp1).

m=1

Theorem 1.15. Consider a supermartingale sequence X : QO — RN and a predictable sequence H : Q — RY with
respect to a filtration F,, where each H,, is non-negative and bounded. Then the random sequence Y : QO — RN
defined by Y, = (H - X),, for each n € N is a supermartingale with respect to F.

Proof. From the definition of Y, it follows that Y is adapted to F,. From the tower property of conditional
expectation, and predictability, non-negativity, and boundedness of H, we obtain

n n
E|Y,| < ) BHuE[|Xp — X 1| | Fo1]] <supHu Y (B |Xn| + E Xy 1]) < 0o,
m=1 m<n m=1

Further, from the definition of Y, the predictability of H, and the supermartingale property of X,

E[Y,11 | Fn] = E[Hup1(Xug1 — Xun) + Yo | Fn] = Hyg1 (B[ X 11| Fn] — Xu) + Y < Yo

1.2 Stopped process

Definition 1.16. Consider a discrete stochastic process X : Q — RN adapted to a discrete filtration J.
Let T: Q) — IN be a random time for the filtration T, then the stopped process X : QO — RN is defined
foreach n € N as

X; 2 Xepan = Xn]l{ng’r} + XT]I{n>T}.

Proposition 1.17. Let X : QO — RN be a martingale and T : Q — N a random time both adapted to the same
discrete filtration F,, then the stopped process X" is a martingale adapted to F.



Proof. Consider a random sequence H : () — {O,l}N defined by H, £ 1{y<qy for each n € N. Then H
is a non-negative and bounded sequence. Further H is predictable with respect to F,, since the event

n<tt={t>n—-1}={t<n-1} = U {t=i}) =i {t#i} € Fp1.

In terms of the non-negative, predictable, and bounded sequence H, we can write the stopped process

TANn n
Xepn=Xo+ Y (Xn = Xin1) = Xo+ Y Lmery (X — Xo1) = Xo + (H- X)n.
m=1 m=1

From the previous theorem, it follows that X7 is a martingale, and we have EX:5, = EX;: 7 = EX;. O

Remark 2. For any martingale X : Q — RN and a stopping time 7 : Q — IN adapted to F., we have
EX:nn = EXj, for all n € N. Since 7 is finite almost surely, it follows that the stopped process X*
converges almost surely to X, i.e. P{lim,en X:tan = X¢} = 1. We are interested in knowing under
what conditions will we have convergence in mean.

Theorem 1.18 (Martingale stopping theorem). Let X : Q — RN be a martingale and 7: Q — N be a
stopping time, both adapted to a common discrete filtration J,. If either of the following conditions holds true.

(i) T is bounded.

(ii) E |Xian| is uniformly bounded.
(iii) IET < 0o, and for some real positive K, we have sup,,n E[| Xy — Xy—1| | Fu1] < K.
Then X is integrable and the stopped process X converges in mean to X, i.e. lim,enEXpn = EXy = EX;,
Proof. We show this is true for all three cases.

(i) Let K be the bound on 7 then for all n > K, we have X5, = X+, and hence it follows that EX; =
EX:p, = EX; foralln > K.

(if) Dominated convergence theorem implies the result.

(ili) We show that this condition implies that [E|Xr,| is uniformly bounded, and thus result follows
from the previous part. We can write the difference Xvp, — Xo =35, 1 {mgn}(Xm — Xu_1) us-
ing the telescopic sum. From triangle inequality for the absolute function and the fact that 0 <
Liu<ny <1, we can upper bound the difference | Xean| — [Xo| < [Xran — Xo| < ey [Xm — Xin-1]-

We define non-negative predictable sequence H : () — {O,l}]N for each m € N, as Hy, = 1 {(m<7)-
From the linearity of expectation, the monotone convergence theorem, non-negativity of Hy,, the
tower property of conditional expectation, predictability of H, and theorem hypothesis, we can
upper bound the mean of this term as

T
E Y | Xuw—Xu|= Y, E[HWE[| Xy — Xp—1| | F—1]] <KE Y H, =KET.
m=1 melN melN

Since 7 is integrable, we observe that X\, is uniformly bounded by an integrable random vari-
able.

O

Corollary 1.19 (Wald’s Equation). If T is a finite mean stopping time for an i.i.d. random sequence X : (3 —
RN such that E | X, | < oo, then

E Xi = lETlEXl.

T
i=1

1=

Proof. Let p = EX and define a random sequence Z : QO — RN for each n € N, as Z,, £ Y1 (X; — ).
Then Z is a martingale adapted to the natural filtration of X, and

E[|Zn — Zy—1| | Fu1] = E[| X — pl] <+ E|X4].

Thus, sup, . E[|Zn — Zy—1| | Fu—1] < 0, and from the Martingale stopping theorem, we have EZ; =
EZ;, = 0. The result follows from the observation that E[Z.:| = EY." ; X; — uET. 0O
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