
Lecture-26: Martingales

1 Martingales

Definition 1.1. Let (Ω,F, P) be a probability space. A filtration is an increasing sequence of σ-fields
denoted by F• = (Fn ⊆ F : n ∈ N), with nth σ-field denoted by Fn.

Definition 1.2. The natural filtration for a discrete time stochastic process X : Ω → RN is defined as
Fn ≜ σ(X1, . . . , Xn).

Definition 1.3. A random sequence X : Ω →RN of random variables is said to be adapted to the filtration
F• if σ(Xn) ⊆ Fn for all n ∈ N.

Remark 1. For any random sequence X adapted to a filtration F•, we also have σ(X1, . . . , Xn) ⊆ Fn for
each n ∈ N.

A martingale is a type of stochastic process whose definition formalizes the concept of a fair game.

Definition 1.4. A discrete stochastic process X : Ω → RN is said to be a martingale with respect to the
filtration F• if it satisfies the following three properties for each n ∈ N,

i adaptability: σ(Xn) ⊆ Fn,

ii integrability: E |Xn| < ∞,

iii unbiasedness: E[Xn+1 | Fn] = Xn.

If the equality in third condition is replaced by ⩽ or ⩾, then the process is called supermartingale or
submartingale, respectively.

Corollary 1.5. For a martingale X adapted to a filtration F•, we have EXn = EX1 for each n ∈ N.

Example 1.6 (Simple random walk). Let F• be the natural filtration of the random independent se-
quence ξ : Ω → RN with mean Eξi = 0 and E |ξi| < ∞ for each i ∈ N. ξ. Consider the random walk
X : Ω → RN with step-size sequence ξ such that Xn ≜ ∑n

i=1 ξi for each n ∈ N. Then X is adapted to F•.
Further, from the linearity of expectation and the finiteness of finitely many individual terms, we have
E |Xn|⩽ ∑n

i=1 E |ξi| < ∞ for each n ∈ N. In addition, we have for each n ∈ N,

E[Xn+1|Fn] = E[Xn + ξn+1 | Fn] = Xn.

Thus, the random walk X is a martingale with respect to filtration F•.

Example 1.7 (Product martingale). Let F• be the natural filtration of random independent sequence
ξ : Ω → RN with mean Eξi = 1 and E |ξi| < ∞ for each i ∈ N. Consider the random sequence X : Ω →
RN defined as Xn ≜ ∏n

i=1 ξi for each n ∈ N. Then X is adapted to F•. Further, from the independence
and finiteness of finitely many individual terms, we have E |Xn| = ∏n

i=1 Eξi < ∞ for each n ∈ N. In
addition, we have for each n ∈ N,

E[Xn+1|Fn] = E[Xnξn+1|Fn] = Xn.

Thus, the random sequence X is a martingale with respect to filtration F•.

Example 1.8 (Branching process). Consider a population where each individual i can produce an inde-
pendent random number of offsprings Zi in its lifetime, with a common distribution P ∈ M(Z+) and
finite mean µ ≜ ∑j∈N jPj < ∞. Let Xn denote the size of the nth generation, which is same as the number
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of offsprings generated by (n − 1)th generation. The discrete stochastic process X : Ω → Z
Z+
+ is called a

branching process. Let X0 = 1 and consider the natural filtration F• of X. We define W : Ω → Z
Z+
+ to be

a random walk with step-size sequence X such that Wn ≜ ∑n
i=0 Xi is the population until generation n

for each n ∈ Z+. It follows that W is adapted to F• and we can write Xn = ∑
Wn−1
i=Wn−2+1 Zi for each n ∈ N.

For any n ∈ N, conditioning on Fn−1 yields

E[Xn | Fn−1] = E[
Wn−1

∑
i=Wn−2+1

Zi | Fn−1] = E[ ∑
i∈N

Zi1(Wn−2,Wn−1]
(i) | Fn−1] = ∑

i∈N

E[Zi | Fn−1]1(Wn−2,Wn−1]
(i).

From the definition of X, we observe that Fn−1 ⊆ σ(X0, Z1, . . . , ZWn−1), and since Z is an independent
sequence Zi is independent of Fn−1 for i > Wn−1. It follows that E[Zi | Fn−1] = EZi = µ for i > Wn−1,
and hence E[Xn | Fn−1] = µXn−1. Applying expectation on both sides, and by induction on n, we get
E[Xn |F0] = X0µn. Consider a positive random sequence Y : Ω →RN

+ defined for each n ∈N as Yn ≜
Xn
µn .

Then, Y is adapted to F•. Since X is a non-negative sequence, we have E[|Yn| | F0] = E[Yn | F0] = X0.
Further, for each n ∈ N

E[Yn+1|Fn] =
1

µn+1 E[Xn+1 | Fn] =
Xn

µn = Yn.

It follows that Y is a martingale with respect to filtration F•.

Example 1.9 (Doob’s Martingale). Consider an arbitrary random sequence Y : Ω → RN with associ-
ated natural filtration F•, and an arbitrary random variable Z : Ω → R such that E |Z|< ∞. We define a
random sequence X : Ω → RN as Xn ≜ E[Z|Fn] for each n ∈ N. From the definition of conditional ex-
pectation, X is adapted to F•. Further, from the Jensen’s inequality for conditional expectation applied
to the convex absolute function, we get E |Xn| ⩽ E[E[|Z| | Fn]] = E |Z| < ∞. Further, from the tower
property of conditional expectation

E[Xn+1|Fn] = E[E[Z|Fn+1]|Fn] = E[Z|Fn] = Xn.

Thus, X is a martingale with respect to F•, and called a Doob-type martingale.

Example 1.10 (Centralized Doob sequence). Let F• be the natural filtration for a random sequence
Y : Ω → RN with E |Yn| < ∞ for all n ∈ N. For each n ∈ N, we can define an associated centralized
zero mean random variable Yn − E[Yn | Fn−1]. Hence, we can define a centralized zero mean sequence
X : Ω → RN for each n ∈ N, as Xn ≜ ∑n

i=1(Yi − E[Yi | Fi−1]). By the definition of condition expectation
and filtration, the random sequence X is adapted to the filtration F•. From the triangle inequality and
the conditional Jensen’s inequality applied to convex absolute function, we get

E |Xn|⩽
n

∑
i=1

E |Yi − E[Yi|Fi−1]|⩽
n

∑
i=1

(
E |Yi|+ E |E[Yi | Fi−1]|

)
⩽ 2

n

∑
i=1

E |Yi| < ∞.

Further, from the linearity and the tower property of conditional expectation, we have

E[Xn+1|Fn] = E[Xn + Yn+1 − E[Yn+1 | Fn] | Fn] = Xn.

Thus, X is a martingale with respect to this filtration F•, and called centralized Doob martingale.

Lemma 1.11. Consider a martingale X : Ω → RN adapted to a filtration F• = (Fn ⊆ F : n ∈ N) defined on
the probability space (Ω,F, P), and a convex function f : R → R such that E | f (Xn)| < ∞ for all n ∈ N. Then,
the random sequence Y : Ω → RN defined for each n ∈ N as Yn ≜ f (Xn), is a submartingale with respect to the
filtration F•.

Proof. We observe that Y is adapted to the filtration F• and integrable by hypothesis. From the condi-
tional Jensen’s inequality applied to convex function f , we get

E[ f (Xn+1) | Fn]⩾ f (E[Xn+1 | Fn]) = f (Xn).
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Corollary 1.12. Consider a random sequence X : Ω → RN defined on the probability space (Ω,F, P), with its
natural filtration F•. Let a ∈ R be a constant, and consider two random sequences Y : Ω → RN

+ and Z : Ω → RN

generated by X, such that for each n ∈ N,

Yn ≜ (Xn − a)+ = (Xn ∨ a)− a, Zn ≜ Xn ∧ a.

i If X is a submartingale with respect to F•, then so is Y with respect to F•.

ii If X is a supermartingale with respect to F•, then so is Z with respect to F•.

Proof. Clearly, both sequences Y and Z are adapted to F•. Defining x 7→ f (x) ≜ (x − a)+ and x 7→
g(x) ≜ x ∧ a for all x ∈ R, we observe that f is convex and non-decreasing and g is concave and non-
decreasing. The function f is positive, and hence E | f (Xn)| = E f (Xn) ⩽ E |Xn| + |a| < ∞. We also
observe that E |g(Xn)|⩽ E |Xn| < ∞.

i From the conditional Jensen’s inequality applied to the convex non-decreasing function f and the
fact that E[Xn+1 | Fn]⩾ Xn, we get E[ f (Xn+1) | Fn]⩾ f (E[Xn+1 | Fn])⩾ f (Xn).

ii From the conditional Jensen’s inequality applied to the concave non-decreasing function f and the
fact that E[Xn+1 | Fn]⩽ Xn, we get E[g(Xn+1) | Fn]⩽ g(E[Xn+1 | Fn])⩽ g(Xn).

1.1 Stopping Times

Consider a discrete filtration F• = (Fn ⊆ F : n ∈ Z+).

Definition 1.13. A positive integer valued, possibly infinite, random variable τ : Ω →N∪{∞} is said to
be a random time with respect to the filtration F•, if the event {τ = n} ∈Fn for each n ∈N. If P{τ < ∞}=
1, then the random time τ is said to be a stopping time.

Definition 1.14. A random sequence H : Ω → RN is predictable with respect to the the filtration F•, if
σ(Hn) ⊆ Fn−1 for each n ∈ N. For a process X adapted to F•, we define

(H · X)n ≜
n

∑
m=1

Hm(Xm − Xm−1).

Theorem 1.15. Consider a supermartingale sequence X : Ω →RN and a predictable sequence H : Ω →RN
+ with

respect to a filtration F•, where each Hn is non-negative and bounded. Then the random sequence Y : Ω → RN

defined by Yn ≜ (H · X)n for each n ∈ N is a supermartingale with respect to F•.

Proof. From the definition of Y, it follows that Y is adapted to F•. From the tower property of conditional
expectation, and predictability, non-negativity, and boundedness of H, we obtain

E |Yn|⩽
n

∑
m=1

E[HmE[|Xm − Xm−1| | Fm−1]]⩽ sup
m⩽n

Hm

n

∑
m=1

(E |Xm|+ E |Xm−1|) < ∞.

Further, from the definition of Y, the predictability of H, and the supermartingale property of X,

E[Yn+1 | Fn] = E[Hn+1(Xn+1 − Xn) + Yn | Fn] = Hn+1(E[Xn+1|Fn]− Xn) + Yn ⩽ Yn.

1.2 Stopped process

Definition 1.16. Consider a discrete stochastic process X : Ω → RN adapted to a discrete filtration F•.
Let τ : Ω → N be a random time for the filtration F•, then the stopped process Xτ : Ω → RN is defined
for each n ∈ N as

Xτ
n ≜ Xτ∧n = Xn1{n⩽τ} + Xτ1{n>τ}.

Proposition 1.17. Let X : Ω → RN be a martingale and τ : Ω → N a random time both adapted to the same
discrete filtration F•, then the stopped process Xτ is a martingale adapted to F•.
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Proof. Consider a random sequence H : Ω → {0,1}N defined by Hn ≜ 1{n⩽τ} for each n ∈ N. Then H
is a non-negative and bounded sequence. Further H is predictable with respect to F•, since the event

{n ⩽ τ} = {τ > n − 1} = {τ ⩽ n − 1}c = (∪n−1
i=0 {τ = i})c = ∩n−1

i=0 {τ ̸= i} ∈ Fn−1.

In terms of the non-negative, predictable, and bounded sequence H, we can write the stopped process

Xτ∧n = X0 +
τ∧n

∑
m=1

(Xm − Xm−1) = X0 +
n

∑
m=1

1{m⩽τ}(Xm − Xm−1) = X0 + (H · X)n.

From the previous theorem, it follows that Xτ is a martingale, and we have EXτ∧n = EXτ∧1 = EX1.

Remark 2. For any martingale X : Ω → RN and a stopping time τ : Ω → N adapted to F•, we have
EXτ∧n = EX1, for all n ∈ N. Since τ is finite almost surely, it follows that the stopped process Xτ

converges almost surely to Xτ , i.e. P{limn∈N Xτ∧n = Xτ} = 1. We are interested in knowing under
what conditions will we have convergence in mean.

Theorem 1.18 (Martingale stopping theorem). Let X : Ω → RN be a martingale and τ : Ω → N be a
stopping time, both adapted to a common discrete filtration F•. If either of the following conditions holds true.

(i) τ is bounded.

(ii) E |Xτ∧n| is uniformly bounded.

(iii) Eτ < ∞, and for some real positive K, we have supn∈N E[|Xn − Xn−1| | Fn−1]⩽ K.

Then Xτ is integrable and the stopped process Xτ converges in mean to Xτ , i.e. limn∈N EXτ∧n = EXτ = EX1,

Proof. We show this is true for all three cases.

(i) Let K be the bound on τ then for all n ⩾ K, we have Xτ∧n = Xτ , and hence it follows that EX1 =
EXτ∧n = EXτ for all n ⩾ K.

(ii) Dominated convergence theorem implies the result.

(iii) We show that this condition implies that E |Xτ∧n| is uniformly bounded, and thus result follows
from the previous part. We can write the difference Xτ∧n − X0 = ∑τ

m=11{m⩽n}(Xm − Xm−1) us-
ing the telescopic sum. From triangle inequality for the absolute function and the fact that 0 ⩽
1{m⩽n} ⩽ 1, we can upper bound the difference |Xτ∧n| − |X0|⩽ |Xτ∧n − X0|⩽ ∑τ

m=1 |Xm − Xm−1| .
We define non-negative predictable sequence H : Ω → {0,1}N for each m ∈ N, as Hm ≜ 1{m⩽τ}.
From the linearity of expectation, the monotone convergence theorem, non-negativity of Hm, the
tower property of conditional expectation, predictability of H, and theorem hypothesis, we can
upper bound the mean of this term as

E
τ

∑
m=1

|Xm − Xm−1| = ∑
m∈N

E[HmE[|Xm − Xm−1| | Fm−1]]⩽ KE ∑
m∈N

Hm = KEτ.

Since τ is integrable, we observe that Xτ∧n is uniformly bounded by an integrable random vari-
able.

Corollary 1.19 (Wald’s Equation). If τ is a finite mean stopping time for an i.i.d. random sequence X : Ω →
RN such that E |X1| < ∞, then

E
τ

∑
i=1

Xi = EτEX1.

Proof. Let µ = EX and define a random sequence Z : Ω → RN for each n ∈ N, as Zn ≜ ∑n
i=1(Xi − µ).

Then Z is a martingale adapted to the natural filtration of X, and

E[|Zn − Zn−1| | Fn−1] = E[|Xn − µ|]⩽ µ + E |X1| .

Thus, supn∈N E[|Zn − Zn−1| | Fn−1] < ∞, and from the Martingale stopping theorem, we have EZτ =
EZ1 = 0. The result follows from the observation that E[Zτ ] = E∑τ

i=1 Xi − µEτ.
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