
Lecture-27: Martingale: convergence and concentration

1 Martingale convergence theorem

Before we state and prove martingale convergence theorem, we state some results which will be used
in the proof of the theorem. Consider a discrete time filtration F• ≜ (Fn : n ∈ N).

Lemma 1.1. Consider a submartingale X : Ω → RN and a stopping time τ : Ω → N both adapted to a filtration
F•. If there exists some N ∈ N such that P{τ ⩽ N} = 1, then EX1 ⩽ EXτ ⩽ EXN .

Proof. Recall that for any random time τ, the stopped process Xτ is submartingale. Hence EXτ ⩾ EX1.
Since τ is a stopping time, we see that for the event {τ = k} for any k ⩽ N

E[XN1{τ=k}|Fk]⩾ Xk1{τ=k} = Xτ1{τ=k}.

Since τ ⩽ N almost surely, we have the following almost sure inequality XN = ∑N
k=1 Xτ1{τ=k}. Result

follows by taking expectation on both sides, using linearity of expectation, and applying tower property
of conditional expectation. That is, EXN = E∑N

k=1 XN1{τ=k} ⩾ E∑N
k=1 Xτ1{τ=k} = EXτ .

Definition 1.2. Consider a discrete random process X : Ω → RZ+
adapted to the filtration F• = (Fn ⊆

F : n ∈ Z+). Let N0 ≜ 0. For the two thresholds a < b, we define the stopping times corresponding to
kth downcrossing and upcrossing times as

N2k−1 ≜ inf{m > N2k−2 : Xm ⩽ a} , N2k ≜ inf{m > N2k−1 : Xm ⩾ b} .

We next define the indicator to the event that the process is in kth upcrossing transition from a to b at
time m, as

Hm ≜ ∑
k∈N

1{N2k−1<m⩽N2k}.

The number of upcrossings completed in time n is defined by

Un ≜ sup{k ∈ N : N2k ⩽ n} = ∑
k∈N

1{N2k⩽n}.

Remark 1. For each k ∈ N, the kth upcrossing timeN2k and the kth downcrossing time N2k−1 are integer
stopping times, and hence we have {N2k−1 < m ⩽ N2k} = {N2k−1 ⩽ m − 1} ∩ {N2k ⩽ m − 1}c ∈ Fm−1.
It follows that σ(Hm)⊆ Fm−1. Hence, the event that the process X is in an upcrossing transition at time
m is predictable. Since N0 = 0, it follows that the first downcrossing time N1 ⩾ 1 and H1 = 0.

Lemma 1.3 (Upcrossing inequality). Let X : Ω → RN be a submartingale adapted to a filtration F•. Then,
we have (b − a)EUn ⩽ E(Xn − a)+.

Proof. Define a random sequence Y : Ω → RN for each n ∈ N, as Yn ≜ a + (Xn − a)+ = Xn ∨ a. Since
X is a submartingale adapted to F• and the map x 7→ f (x) = x ∨ a is convex, it follows that Y is also
a submartingale adapted to F•. We observe that 1{m⩽n}1{N2k−1<m⩽N2k} = 1{N2k−1<m⩽N2k∧n}, and each
upcrossing has a gain lower bounded by b − a, and hence

(H ·Y)n = ∑
m∈N

∑
k∈N

1{N2k−1<m⩽N2k∧n}(Ym −Ym−1) =
Un

∑
k=1

N2k

∑
m=N2k−1+1

(Ym −Ym−1) =
Un

∑
k=1

(YN2k −YN2k−1)⩾ (b− a)Un.

Let Km ≜ 1 − Hm for each m ∈ N. Since H is predictable, then so is K with respect to F•, and

Yn − Y0 =
n

∑
i=1

(Yi − Yi−1) =
n

∑
i=1

(Hi + Ki)(Yi − Yi−1) = (H · Y)n + (K · Y)n.
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Since H : Ω → {0,1}N is a non-negative and bounded sequence, so is K : Ω → {0,1}N. Further, since Y
is a submartingale, so is ((K · Y)n : n ∈ Z+). Therefore, we can write

E[(K · Y)n]⩾ E[(K · Y)1] = E[K1(Y1 − Y0)] = E[Y1 − Y0]⩾−E(X0 − a)+.

Therefore, it follows that

E(Yn − Y0) = E(H · Y)n + E(K · Y)n ⩾ E(H · Y)n − E(X0 − a)+ ⩾ (b − a)EUn − E(X0 − a)+.

The result follows from the fact that EYn − EY0 = E(Xn − a)+ − E(X0 − a)+.

Theorem 1.4 (Martingale convergence theorem). Let X : Ω → RN be a submartingale adapted to filtration
F•. If supn∈NEX+

n < ∞ then (a) limn∈NXn = X∞ a.s and (b) E |X∞|< ∞. That is, X converges almost surely
and in mean.

Proof. We will show this in two parts.
(a) To show that limn∈N Xn exists almost surely, we show that limsupn∈N Xn = liminfn∈N Xn almost

surely. From the density of rationals in reals, it suffices to show that

P

 ⋃
a,b∈Q

{liminf Xn < a < b < limsup Xn}

 = 0.

To this end, it suffices to show that {Xn ⩽ a or Xn ⩾ b infinitely often} = 0 for any a,b ∈ Q. We fix
a,b ∈ Q, and observe that Un is the number of upcrossings until time n, then it suffices to show that
limsupn∈N Un is finite almost surely. To this end, we observe that (X − a)+ ⩽ X+ + |a|, and hence
it follows from the upcrossing inequality and the theorem hypothesis that

sup
n∈N

EUn ⩽ sup
n∈N

EX+
n + |a|

b − a
< ∞.

That is, even though the number of upcrossings Un increases with n, the mean EUn is uniformly
bounded above for each n ∈ N. Hence, limn∈N EUn exists and is finite. From monotone conver-
gence theorem, we have E limn∈N Un = limn∈N EUn. We define U ≜ limn∈N Un and since EU ⩽
supn EUn < ∞, it follows that U < ∞ almost surely.

(b) Since X∞ ≜ limn∈N Xn exists almost surely, to show the convergence in mean, it suffices to show
that limn∈N EXn = E limn∈N Xn. It suffices to show that E |X∞| < ∞, then the result would follow
from the application of dominated convergence theorem to exchange the limit and expectation. To
this end, we observe EX+

∞ ⩽ liminfn∈NEX+
n < ∞ from Fatou’s Lemma, that X∞ < ∞ almost surely.

Further, we have EX−
n = EX+

n − EXn ⩽ EX+
n − EX0 from the submartingale property of X. From

this propety and application of Fatou’s lemma to the sequence (X−
n : n ∈ N), we get

EX−
∞ ⩽ liminfn∈NEX−

n ⩽ supn∈NEX+
n − EX0 < ∞.

This implies X∞ > −∞ almost surely, completing the proof.

Example 1.5 (Polya’s Urn Scheme). Consider a random sequence ((Bn,Wn) : n ∈ N), where Bn,Wn
respectively denote the number of black and white balls in an urn after n ∈ N draws. At each draw n,
balls are uniformly sampled from this urn. After each draw, one additional ball of the same color to the
drawn ball, is returned to the urn. We are interested in characterizing evolution of this urn, given initial
urn content (B0,W0). Let ξi be the indicator that the outcome of the ith draw is a black ball. Then,

Bn = B0 +
n

∑
i=1

ξi = Bn−1 + ξn, Wn = W0 +
n

∑
i=1

(1 − ξi) = Wn−1 + 1 − ξn.

The proportion of black balls after n draws is denoted by Xn ≜ Bn
Bn+Wn

= Bn
B0+W0+n . It is clear that Bn +

Wn = B0 + W0 + n. We are interested in finding the limiting ratio of black balls limn∈N Xn. Let Fn ≜
σ(B0,W0,ξ1, . . . ,ξn) be the σ-field generated by the first n indicators to draws of black balls. We fix
n ∈ N, and observe that from the uniform sampling of the balls in the urn, we have E[ξn+1 | Fn] = Xn.
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From the definition of conditional expectation, we have σ(Xn) ⊆ Fn. Further, Xn ∈ [0,1], and hence
EX+

n = E |Xn| = EXn ⩽ 1 . In addition, we observe that

E[Xn+1 | Fn] =
1

B0 + W0 + n + 1
E[Bn+1|Fn] =

Bn + Xn
Bn
Xn

+ 1
= Xn.

Since the choice of n ∈ N, it follows that X : Ω → [0,1]N is a martingale adapted to filtration F• ≜ (Fn :
n ∈ N). Since supn∈N EX+

n = supn∈N EXn ⩽ 1, it follows that limn∈N Xn exists almost surely and in
mean, from Martingale convergence theorem applied to martingale X. Further, from the Martingale
property of X, we have EXn = X0 =

B0
B0+W0

for all n ∈ N. It follows that limn∈N Xn = X0 almost surely.

2 Martingale concentration inequalities

Consider a discrete time filtration F• ≜ (Fn ⊆ F : n ∈ N) defined on a probability space (Ω,F, P). Let
X : Ω → RN be a random sequence and τ : Ω → N a stopping time, both adapted to the filtration F•.

Remark 2. Recall that for a submartingale X and a stopping time τ bounded above by n, both adapted
to the same filtration F•, we have EX1 ⩽ EXτ ⩽ EXn.

Theorem 2.1 (Kolmogorov’s inequality for submartingales). For a non-negative submartingale X : Ω →
RN

+ and a > 0, P
{

maxi∈[n] Xi > a
}
⩽ E[Xn ]

a .

Proof. We define a random time τa ≜ inf{i ∈ N : Xi > a} and stopping time τ ≜ τa ∧ n. It follows that,{
max
i∈[n]

Xi > a
}
= ∪i∈[n] {Xi > a} = {Xτ > a} .

Using this fact and Markov inequality, we get P
{

maxi∈[n] Xi > a
}
= P{Xτ > a}⩽ E[Xτ ]

a . Since τ ⩽ n is
a bounded stopping time, the result follows from Remark 2.

Corollary 2.2. For a martingale X and positive constant a,

P
{

max
i∈[n]

|Xi| > a
}
⩽

E |Xn|
a

, P
{

max
i∈[n]

|Xi| > a
}
⩽

EX2
n

a2 .

Proof. The proof the above statements follow from and Kolmogorov’s inequality for submartingales,
and by considering the convex functions f (x) = |x| and f (x) = x2.

Theorem 2.3 (Strong law of large numbers). Let S : Ω →RN be a random walk with i.i.d. step size X having
finite mean µ. If the moment generating function t 7→ M(t)≜ EetX1 exists for all t ∈ R+, then limn∈N

Sn
n = µ

almost surely.

Proof. For a given ϵ > 0, we define the following map t 7→ g(t) ≜ et(µ+ϵ)

M(t) for all t ∈ R+. Then, it is
clear that M(0) = g(0) = 1. From the fact that M(0) = 1 and M′(0) = µ = EX1, we obtain g′(0) =
M(0)(µ+ϵ)−M′(0)

M2(0) = ϵ > 0. Hence, there exists a value t0 > 0 such that g(t0)> 1. We now show that Sn
n can

be as large as µ + ϵ only finitely often. To this end, note that{
Sn

n
⩾ µ + ϵ

}
⊆

{
et0Sn

M(t0)n ⩾ g(t0)
n
}

. (1)

We define a random sequence Y : Ω → RN
+ for each n ∈ N as Yn ≜ et0Sn

Mn(t0)
= ∏n

i=1
et0Xi
M(t0)

. We observe
that Yn is a product of independent non negative random variables with unit mean, and hence is a
non-negative product martingale with limn EYn = 1. By martingale convergence theorem, the limit
limn∈N Yn exists, is finite, and has mean unity. Since g(t0) > 1, it follows from (1) that

0 = P{Yn ⩾ g(t0)
n infinitely often}⩾ P

{
Sn

n
⩾ µ + ϵ for an infinite number of n

}
⩾ 0.
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Similarly, we can define a map t 7→ f (t)≜ et(µ−ϵ)

M(t) for all t ∈ R+ and note that f (0) = 1 and f ′(0) =−ϵ < 0.
Therefore, there exists a value t0 > 0 such that f (t0) < 1, we can prove in the similar manner that

0 = P{Yn ⩽ f (t0)
n infinitely often}⩾ P

{
Sn

n
⩽ µ − ϵ for an infinite number of n

}
= 0.

The result follows from combining both these results, and taking the limit of arbitrary ϵ ↓ 0.

2.1 Generalized Azuma inequality

Lemma 2.4. For a zero mean random variable X with support [−α, β] and any convex function f

E f (X)⩽
β

α + β
f (−α) +

α

α + β
f (β).

Proof. From convexity of f , any point (X,Y) on the line joining points (−α, f (−α)) and (β, f (β)) is

Y = f (−α) + (X + α)
f (β)− f (−α)

β + α
⩾ f (X).

Result follows from taking expectations on both sides.

Lemma 2.5. For θ ∈ [0,1] and θ̄ ≜ 1 − θ, we have θeθ̄x + θ̄e−θx ⩽ ex2/8 for all x ∈ R.

Proof. We define α ≜ 2θ − 1, β ≜ x
2 , and a map f (α, β) ≜ cosh β + αsinh β − eαβ+β2/2 for all α ∈ [−1,1]

and β ∈ R. We observe that f (α,0) = 0 and

θeθ̄x + θ̄e−θx − ex2/8 =
(1 + α)

2
e(1−α)β +

(1 − α)

2
e−(1+α)β − eβ2/2 = e−αβ f (α, β).

We observe that f (α, β)< 0 for |α|= 1 and sufficiently large β. We will show that there are no stationary
points for f (α, β) other than α = 0 or β = 0, which implies that f (α, β)⩽ 0 for all α ∈ [−1,1] and β ∈ R.
To find the stationary points of f (α, β), we take the partial derivative with respect to variables α and β,
equate them to zero, and obtain

sinh β + αcosh β = (α + β)eαβ+β2/2, sinh β = βeαβ+β2/2.

If β ̸= 0, then the stationary point satisfies 1 + αcoth β = 1 + α
β , with the only solution being β = tanh β

for α ̸= 0. By Taylor series expansion, it can be seen that β = 0 is the unique solution to this equation.

Proposition 2.6. Let α, β, a,b > 0. If X a zero mean martingale adapted to filtration F• such that Xn − Xn−1 ∈
[−α, β] for each n ∈ N, then

P
(
∪n∈N {Xn ⩾ a + bn}

)
⩽ exp

(
− 8ab
(α + β)2

)
. (2)

Proof. Let X0 = 0 and c > 0. We define a random sequence W : Ω → RN for each n ∈ Z+ as Wn ≜
ec(Xn−a−bn). We will show that W is a supermartingale adapted to the filtration F•. We fix n ∈ N. Since
X is adapted to F• and Wn is a deterministic function of Xn, it follows that σ(Wn) ⊆ σ(Xn) ⊆ Fn. We
observe that |Wn|=Wn and EW0 = e−ca < 1. Writing Wn =Wn−1e−cbec(Xn−Xn−1), and taking conditional
expectation on both sides, we obtain

E[Wn | Fn−1] = Wn−1e−cbE[ec(Xn−Xn−1) | Fn−1]. (3)

Applying Lemma 2.4 to the convex function f (x) = ecx and conditionally zero mean random variable
Xn − Xn − 1 ∈ [−α, β], replacing expectation with conditional expectation, the fact that E[Xn − Xn−1 |
Fn−1] = 0, and applying Lemma 2.5 to θ ≜ α

(α+β)
∈ [0,1] and x ≜ c(α + β) ∈ R+, we obtain that

E[ec(Xn−Xn−1)|Fn−1]⩽
βe−cα + αecβ

α + β
= θ̄e−c(α+β)θ + θec(α+β)θ̄⩽ec2(α+β)2/8. (4)
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Setting the value c ≜ 8b
(α+β)2 , and substituting (4) in (3), we obtain E[Wn | Fn−1] ⩽ Wn−1e−cb+ c2(α+β)2

8 =

Wn−1. Taking expectation on both sides, we recursively obtain that E |Wn| = EWn < EW0 ⩽ 1 for all
n ∈ N. Thus, we have shown that W is a supermartingale adapted to F•. For a fixed positive in-
teger k, we define the following bounded stopping time τ ≜ inf{n ∈ N : Xn ⩾ a + bn} ∧ k, such that
{Xτ ⩾ a + bτ}= ∪k

n=1 {Xn ⩾ a + bn}. Thus, from the definition of W, application of Markov inequality
and optional stopping theorem, and supermartingale property of W, we get

P
(
∪k

n=1 {Xn ⩾ a + bn}
)
= P{Xτ ⩾ a + bτ} = P{Wτ ⩾ 1}⩽ E[Wτ ]⩽ E[W0] = e−ca = e

− 8ab
(α+β)2 .

Since, the choice of k was arbitrary, the result follow from letting k → ∞.

Theorem 2.7 (Generalized Azuma inequality). Let α, β, c > 0 and m ∈ Z+. If X is a zero mean martingale
adapted to F• such that Xn − Xn−1 ∈ [−α, β] for each n ∈ N, then

P
(
∪n⩾m {Xn ⩾ nc}

)
⩽ e

− 2mc2

(α+β)2 , P
(
∪n⩾m {Xn ⩽−nc}

)
⩽ e

− 2mc2

(α+β)2 .

Proof. We fix m ∈ Z+,n ⩾ m and define a ≜ mc
2 ,b ≜ c

2 . It follows that {Xn ⩾ nc} ⊆ {Xn ⩾ a + bn}. Ap-
plying Proposition 2.6 to zero mean martingale X, we get

P
(
∪n⩾m {Xn ⩾ nc}

)
⩽ P

(
∪n⩾m {Xn ⩾ a + bn}

)
⩽ P

(
∪n∈N {Xn ⩾ a + bn}

)
⩽ e

− 8( mc
2 )( c

2 )

(α+β)2 = e
− 2mc2

(α+β)2 .

This proves first inequality, and second inequality follows by considering the martingale −X.

A Uniform integrability

Definition A.1. A random sequence X : Ω → RN with distribution function Fn ≜ FXn for each n ∈ N, is
said to be uniformly integrable if for every ϵ > 0, there is a yϵ such that for each n ∈ N

E[|Xn|1{|Xn |>yϵ}] =
∫
|x|>yϵ

|x|dFn(x) < ϵ.

Lemma A.2. If a random sequence X : Ω → RN is uniformly integrable then there exists a finite M such that
E |Xn| < M for all n ∈ N.

Proof. Let y1 be as in the definition of uniform integrability. Then

E|Xn| =
∫
|x|⩽y1

|x|dFn(x) +
∫
|x|>y1

|x|dFn(x)⩽ y1 + 1.
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