Lecture-27: Martingale: convergence and concentration

1 Martingale convergence theorem

Before we state and prove martingale convergence theorem, we state some results which will be used
in the proof of the theorem. Consider a discrete time filtration Fo = (F, : 7 € N).

Lemma 1.1. Consider a submartingale X : QO — RN and a stopping time T : Q — IN both adapted to a filtration
Fo. If there exists some N € IN such that P{t < N} =1, then EX; < EX: < EXy.

Proof. Recall that for any random time 7, the stopped process X" is submartingale. Hence EX; > EXj.
Since T is a stopping time, we see that for the event {7 =k} for any k < N

E[XNL{r=ky|Fk] = XiL{r=) = XcLi{r=p)-

Since T < N almost surely, we have the following almost sure inequality Xy = Y | X1 (r=k}- Result
follows by taking expectation on both sides, using linearity of expectation, and applying tower property
of conditional expectation. That is, EXy = EY Xn1 gy = EXR ) Xel gy = EXq. O

Definition 1.2. Consider a discrete random process X : (2 — RZ" adapted to the filtration Fo = (F,, C
F:neZ"). Let Ny = 0. For the two thresholds a < b, we define the stopping times corresponding to
kth downcrossing and upcrossing times as

Noj_1 2 inf{m > Ny_»: X;y < a}, Nog 2inf{m > Ny_1 : X = b}.

We next define the indicator to the event that the process is in kth upcrossing transition from a to b at
time m, as

Hy 2 ) LNy 1 <m<Ny}-
kelN
The number of upcrossings completed in time 7 is defined by

Uy £sup{ke N: Ny <n}=)_ 1Ny}
keN

Remark 1. For each k € IN, the kth upcrossing timeN,; and the kth downcrossing time Ny;_1 are integer
stopping times, and hence we have { Ny 1 <m < Nog} = {Nyp 1 <m — 1} N{Ny <m—1}* € F,,_1.
It follows that o(Hy,) C F,,_1. Hence, the event that the process X is in an upcrossing transition at time
m is predictable. Since Ny = 0, it follows that the first downcrossing time N; > 1 and H; =0.

Lemma 1.3 (Upcrossing inequality). Let X : Q — RN be a submartingale adapted to a filtration Fo. Then,
we have (b — a)EU, < E(X, —a)™.

Proof. Define a random sequence Y : () — RN foreachn € N, as Y, £a + (X, —a)™ = X, Va. Since
X is a submartingale adapted to F, and the map x — f(x) = x \V a is convey, it follows that Y is also
a submartingale adapted to F.. We observe that 1<) LNy, <m<Ny} = LNy <m<Nyan}, and each
upcrossing has a gain lower bounded by b — 4, and hence

U, N2k Uy
H-Y)n= Y, Y Ty yemengrnt Y= Y1) =3, Y Yo —=Yu1) =Y Yy — Yoy ) = (b—a)Uy.
meN keIN k=1m=Np_1+1 k=1

Let K, £ 1 — H,, for each m € N. Since H is predictable, then so is K with respect to F,, and

n n

Y, — Yo = .Z(Y" —Yi) =Y (Hi+K)(Y;i—=Yii1) = (H-Y)u+ (K- Y)y.

=1 i=1



Since H : Q) — {0,1}N is a non-negative and bounded sequence, so is K : Q0 — {0,1}. Further, since Y
is a submartingale, so is ((K - Y),, : n € Z™). Therefore, we can write

E[(K-Y)u] > E[(K-Y)1] = E[Ki (Y1 — Yo)] = E[Y1 = Yo| > ~E(Xo —a) ™.
Therefore, it follows that
E(Y,—Y)=EH-Y),+EK-Y), >EH-Y), —E(Xo—a)" > (b—a)EU, —E(Xy—a)".
The result follows from the fact that EY,, — EYy = E(X,, —a)™ —E(Xg—a)™. O

Theorem 1.4 (Martingale convergence theorem). Let X : QO — RN be a submartingale adapted to filtration
Fo. If sup,, . NEX; < oo then (a) lim,en Xy, = Xeo a.5 and (b) E | Xeo| < 00. That is, X converges almost surely
and in mean.

Proof. We will show this in two parts.
(a) To show that lim,c X, exists almost surely, we show that limsup, . X;y = liminf,cn X, almost
surely. From the density of rationals in reals, it suffices to show that

P U {liminfX, <a < b <limsupX,} | =0.
a,beQ

To this end, it suffices to show that {X,, <a or X,, > b infinitely often} = 0 for any a,b € Q. We fix
a,b € Q, and observe that U, is the number of upcrossings until time 7, then it suffices to show that
limsup,,.p Uy is finite almost surely. To this end, we observe that (X —a)™ < Xt + |a|, and hence
it follows from the upcrossing inequality and the theorem hypothesis that

EX;"
sup EU, < sup EXyy + la] <
nelN nelN b—a

That is, even though the number of upcrossings U, increases with 7, the mean EU, is uniformly
bounded above for each n € IN. Hence, lim, <N EU, exists and is finite. From monotone conver-
gence theorem, we have Elim,cn U, = lim,en EU,. We define U £ Jim, e Uy, and since EU <
sup, EU, < oo, it follows that U < co almost surely.

(b) Since X £ lim,cp X, exists almost surely, to show the convergence in mean, it suffices to show
that lim, N EX,, = Elimy,cn X, It suffices to show that [E | X«| < o0, then the result would follow
from the application of dominated convergence theorem to exchange the limit and expectation. To
this end, we observe EXJ; < liminf,cNEX; < oo from Fatou’s Lemma, that X < co almost surely.
Further, we have EX,, = EX, — EX,, < EX;l — EXj from the submartingale property of X. From
this propety and application of Fatou’s lemma to the sequence (X;, : n € IN), we get

EX,, <liminf,eNEX, <sup,.nEX; —EX( < co.

This implies X« > —oo almost surely, completing the proof.

Example 1.5 (Polya’s Urn Scheme). Consider a random sequence ((B,, W) : n € N), where B,, W,
respectively denote the number of black and white balls in an urn after n € IN draws. At each draw n,
balls are uniformly sampled from this urn. After each draw, one additional ball of the same color to the
drawn ball, is returned to the urn. We are interested in characterizing evolution of this urn, given initial
urn content (B, Wp). Let &; be the indicator that the outcome of the ith draw is a black ball. Then,

n n
Bn:BO‘i‘Zéi:Bn—l“‘Cn/ Wn:WO+Z(1_§i):Wn—1+1_§n~
i=1 i=1

The proportion of black balls after 7 draws is denoted by X,, Bni”wn =1 ﬁ;@o +- It is clear that B, +
Wy, = By + Wp + n. We are interested in finding the limiting ratio of black balls lim,cn X;,. Let F, =
o(Bo,Wo,81,--.,Cn) be the o-field generated by the first n indicators to draws of black balls. We fix

n € N, and observe that from the uniform sampling of the balls in the urn, we have E[&,+1 | Fu] = X



From the definition of conditional expectation, we have o(X,) C F,. Further, X,, € [0,1], and hence
EX;f =E|X,| = EX, <1.Inaddition, we observe that

1 By + X
E(By11|Fn] = " = Xa-

E[Xy11|Fn]=———
Xt | ] Bo+Wo+n+1 Bu 41

s

Since the choice of n € N, it follows that X : Q) — [0,1]N is a martingale adapted to filtration Fo £ (F, :
n € IN). Since supne]N]EX,J{ = sup, .y EX; <1, it follows that lim,cpn Xj; exists almost surely and in
mean, from Martingale convergence theorem applied to martingale X. Further, from the Martingale

property of X, we have EX,, = Xy = ﬁ for all n € IN. It follows that lim, < X, = Xo almost surely.

2 Martingale concentration inequalities

Consider a discrete time filtration Fo £ (F, C F: n € N) defined on a probability space (Q,F,P). Let
X : Q — RN be a random sequence and 7 : Q) — IN a stopping time, both adapted to the filtration F.

Remark 2. Recall that for a submartingale X and a stopping time T bounded above by 7, both adapted
to the same filtration F,, we have EX; < EX; <EX,,.

Theorem 2.1 (Kolmogorov’s inequality for submartingales). For a non-negative submartingale X : (3 —
RN anda >0, P {maxie[n] X; > a} < ElXd],

a

Proof. We define a random time 7, £ inf {i € N : X; > a} and stopping time T £ 7, A n. It follows that,

{maxXi > 11} = Ujep {Xi > a} = {Xr >a}.

ie[n]
Using this fact and Markov inequality, we get P {maxie[n] Xi> a} =P{X:>a} < %. Since T < nis
a bounded stopping time, the result follows from Remark 2} O
Corollary 2.2. For a martingale X and positive constant a,

E|X EX?2

P{max|X;| >a gM, P{max|X;| >ap < —5".
: ; 2
ic(n] a i€[n] a

Proof. The proof the above statements follow from and Kolmogorov’s inequality for submartingales,
and by considering the convex functions f(x) = |x| and f(x) = x2. O

Theorem 2.3 (Strong law of large numbers). Let S: Q) — RN be a random walk with i.i.d. step size X having

finite mean y. If the moment generating function t — M(t) £ Ee'®1 exists for all t € Ry, then lim,en 57” =u
almost surely.

Proof. For a given € > 0, we define the following map t — g(t) = eﬁ&;) for all t € R;. Then, it is

clear that M(0) = ¢(0) = 1. From the fact that M(0) = 1 and M’(0) = 4 = EX3, we obtain ¢’'(0) =
M(0)(p+€)—M'(0)

=€ > 0. Hence, there exists a value ty > 0 such that g(#p) > 1. We now show that S;,—” can

M?(0)
be as large as y + € only finitely often. To this end, note that
SYI etOSn n
AN Cd{— > . 1
{ n ]/£+€} = {M(to)” g(tO) ( )
We define a random sequence Y : QO — RY for each n € N as Y, £ 1\2207(5;;) =11, f;?—z) We observe

that Y}, is a product of independent non negative random variables with unit mean, and hence is a
non-negative product martingale with lim,EY, = 1. By martingale convergence theorem, the limit
lim, e Yy exists, is finite, and has mean unity. Since g(ty) > 1, it follows from (1) that

0= P{Y; > g(tp)" infinitely often} > P { % > p + € for an infinite number of n} >0.



Similarly, we can define a map > f(t) = EK/’;(;;) forall t € R and note that f(0) =1and f'(0) = —e < 0.

Therefore, there exists a value t; > 0 such that f(tp) < 1, we can prove in the similar manner that

0= P{Yy < f(to)" infinitely often} > P { % < p — € for an infinite number of n} =0.
The result follows from combining both these results, and taking the limit of arbitrary € | 0. O

2.1 Generalized Azuma inequality

Lemma 2.4. For a zero mean random variable X with support [—w, B] and any convex function f

B o
Flw)+ g

Ef(X) <

< 7).

Proof. From convexity of f, any point (X,Y’) on the line joining points (—«, f(—a)) and (B, f(B)) is

V= s + (x4 FOZLE S px),

Result follows from taking expectations on both sides. O
Lemma 2.5. For 0 € [0,1] and 6 £ 1 — 6, we have 0e9% 1+ Pe—0* < exz/gfor all x e R.

Proof. We define « 226 — 1, = %, and a map f(a,B) = coshp + asinhf — B +F/2 for all a € [—1,1]
and B € R. We observe that f(«,0) =0 and

0% 1 ge—0x — /8 = (LT ;L %) - (1= > %) ~(1+0)p _ /2 _ e f(w, B).

We observe that f(a, ) < 0 for |«| = 1 and sufficiently large . We will show that there are no stationary
points for f(«,B) other than « = 0 or B = 0, which implies that f(«, ) < 0forallw € [-1,1] and B € R.
To find the stationary points of f(a,p), we take the partial derivative with respect to variables « and B,
equate them to zero, and obtain

sinh + acoshf = (a + ﬁ)e"‘ﬁJrﬁZ/z, sinh g = ‘Bg“ﬁ+52/2_

If B # 0, then the stationary point satisfies 1 + acothp =1+ %, with the only solution being 8 = tanh 3
for a # 0. By Taylor series expansion, it can be seen that = 0 is the unique solution to this equation. [

Proposition 2.6. Let o, B,a,b > 0. If X a zero mean martingale adapted to filtration Ty such that X, — X,,_1 €
[—w, B for each n € N, then

8ab
> < _ ‘
P(UneN{Xn/a—l-bn})\exp( (a—I—,B)2> 2
Proof. Let Xg = 0 and ¢ > 0. We define a random sequence W : Q) — RN for each n € Z as W, £

e¢(Xn=a=bn) “We will show that W is a supermartingale adapted to the filtration F,. We fix n € IN. Since
X is adapted to F, and W, is a deterministic function of X,,, it follows that c(W,) C o(X,) C F,. We

observe that [W,,| = W,, and EWj = e~ < 1. Writing W,, = W,,_je~¢(X»~Xn-1) and taking conditional
expectation on both sides, we obtain

E[W, | Fu_1] = W,_1e” PE[c K —Xu1) | F, 1. )

Applying Lemma 2.4|to the convex function f(x) = e and conditionally zero mean random variable
X, — Xn —1 € [—a, B], replacing expectation with conditional expectation, the fact that E[X, — X;,_1 |
i

F,_1] =0, and applying Lemma[2.5to § £ (“iﬁ) €1[0,1] and x £ c(a + B) € R, we obtain that

Be  + weP

_ go—c(a+p)o c(atp)8 2(a+p)2/8
pyy; e + Oe <e . 4)

]E[EC(Xn*anl) |Fn_1]<



. I . . A (a+p)?
Setting the value ¢ £ ( i%)z, and substituting @) in (@), we obtain E[W,, | , 1] < W,_je=¢+ 5 =
o

W,,_1. Taking expectation on both sides, we recursively obtain that IE |W,| = EW,, < EW, <1 for all
n € N. Thus, we have shown that W is a supermartingale adapted to J,. For a fixed positive in-
teger k, we define the following bounded stopping time T £ inf{n € N : X, > a + bn} Ak, such that
{Xr >a+bt}=U_ {X, >a+ bn}. Thus, from the definition of W, application of Markov inequality
and optional stopping theorem, and supermartingale property of W, we get

__8ab

P(USy {Xu 2 a+bn} ) = P{X: 2 a+bT} = P{W; > 1} SE[We] SE[Wo] =™ =¢ 7,

Since, the choice of k was arbitrary, the result follow from letting k — oc. O

Theorem 2.7 (Generalized Azuma inequality). Let «,8,c > 0and m € Z .. If X is a zero mean martingale
adapted to F such that X, — X,,_1 € [—«, | for each n € N, then

_ 2mc? 2mc?

P( Unzm {Xn > ”C}) Se @2, P( Unzm {Xn < —”C}) <e @7,

Proof. We fix m € Z,n > m and define a = ",b £ §. It follows that {X, > nc} C {X, > a+ bn}. Ap-
plying Proposition[2.6|to zero mean martingale X, we get

,8(%)<%> _ 2mc?
P((Unzm (X 216} ) <P(Unzm (X 2 a+bn} ) <P(Unen {Xu Za+bn}) <o @9F =¢ Gor?,
This proves first inequality, and second inequality follows by considering the martingale —X. O

A Uniform integrability

Definition A.1. A random sequence X : () — RN with distribution function F, £ Fx foreachn €N, is
said to be uniformly integrable if for every € > 0, there is a y. such that for each n € IN

BIXl Lxop] = [ ldF(0) <e

Lemma A.2. If a random sequence X : Q — RN is uniformly integrable then there exists a finite M such that
E|X,| < M forall n € N.

Proof. Let y; be as in the definition of uniform integrability. Then

E|X,| :/ Ix|dEy (x) + |x|dF, (x) <y1 + 1.
|x|<y1 |x[>y1
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