
Lecture-28: Exchangeability

1 Exchangeability

Definition 1.1. A finite permutation of N is a bijective map α : N → N such that α(i) ̸= i for only finitely
many i. That is, for a finite subset F ⊂ N, we have α(F) = {α(i) : i ∈ F} = F and α(i) = i for i /∈ F.

Remark 1. It is clear that a finite permutation α can always be defined on an interval of form [n], where
n = max{i ∈ N : α(i) ̸= i}.

Definition 1.2. We define a projection operator πi : ∏n∈N Ωn → Ωi such that πi(ω) ≜ ωi for any se-
quence ω ∈ ∏n∈N Ωn.

Definition 1.3. Let Xi : Ωi → X be a random variable on the probability space (Ωi,Si,µi). Consider the
probability space (Ω,F, P) for the process X : Ω → XN, where

Ω = Ω1 × Ω2 × . . . , F = S1 ⊗ S2 ⊗ . . . , P = µ1 ⊗ µ2 ⊗ . . . .

Remark 2. For a projection operation πi : ∏n∈N Ωn → Ωi and any event Ai ∈ Si, we have

π−1
i (Ai) = Ω1 × · · · × Ai × · · · ∈ F.

This also implies that (P ◦ π−1
i )(Ai) = µi(Ai) for any Ai ∈ Si and hence µi = P ◦ π−1

i .

Definition 1.4. Consider an outcome ω ∈ Ω ≜ ∏n∈N Ωn, the projection operator πi : Ω → Ωi for some
i ∈ N, and a finite permutation α : N → N, then we can define a finitely permuted outcome α(ω) ≜
(ωα(i) : i ∈ N) in terms of its projections for each outcome ω ∈ Ω, as

(πi ◦ α)(ω)≜ πα(i)(ω).

Definition 1.5. An event A ∈ F is n-permutable if for all n-permutations α : [n]→ [n], we have

A = α−1(A) = {ω ∈ Ω : α(ω) ∈ A} .

An event A ∈ F is permutable if it is n-permutable for all n ∈ N.

Example 1.6 (Permutable event). Consider a random sequence ω ∈ Ω = {H, T}N, then the event
A ≜ {k heads in first n tosses} is n-permutable.

Example 1.7 (Non-permutable event). Consider a random sequence ω ∈ Ω = {H, T}N, then the
event A ≜ {ω1 = H,ω2 = T} is not permutable.

Example 1.8 (One-dimensional random walk). Consider a one-dimensional random walk Sn ≜
∑n

i=1 Xi, n ∈ N defined for i.i.d. step-size sequence X : Ω → RN. Let c ∈ (R \ {0})N be a non-zero
constant sequence. We define the following events

A ≜ ∩n∈N ∪k⩾n {Sk ⩽ x} = {Sn ⩽ x infinitely often } , B ≜

{
limsup

n∈N

Sn

cn
⩾ 1

}
.

The events A, B are permutable. This is due to the fact that Sn(X) = Sn(α(X)) for any n-permutation
α, and hence A and B are n-permutable.

Example 1.9 (Tail σ-algebra). For any random sequence X : Ω → XN, we define Gn ≜ α(Xk,k ⩾ n)
for each n ∈ N and tail σ-algebra as T≜ ∩n∈NGn. Then, all events in T are permutable. This follows
from the fact that any event A ∈ T belongs to Gn+1 for all n ∈ N. Further, any A ∈ Gn remains
unaffected by the permutation of (X1, . . . , Xn) and hence A is n-permutable.
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Definition 1.10. The collection of all n-permutable events is a σ-algebra called n-exchangeable and is
denoted by En. The collection of permutable events is a σ-algebra called exchangeable and is denoted by
E.

Definition 1.11. A random sequence X : Ω → XN is called exchangeable if for each n-permutation α :
[n]→ [n], the joint distribution of (X1, X2, . . . , Xn) and (Xα(1), Xα(2), . . . , Xα(n)) are identical.

Remark 3. Observe that permutable is measure-independent, while exchangability is measure-dependent.
Remark 4. A random process X : Ω → XN is exchangeable if all the events in its event space are per-
mutable. That is, σ(X) ⊆ E.

Example 1.12 (Draw without replacement). Suppose balls are selected uniformly at random,
without replacement, from an urn consisting of n balls of which k are white. For draw i ∈ [n],
let ξi be the indicator of the event that the ith selection is white. Then the finite collection
(ξ1, . . . ,ξn) is exchangeable but not independent. In particular, we consider the random index
set W ≜ {i ∈ [n] : ξi = 1}. It follows that |W| = k, and we can write the probability of the event
{W = A} ∈ F for some index set A ⊆ [n] such that |A| = k as

P{W = A} = P
{

ξi = 1, i ∈ A,ξ j = 0, j /∈ A
}
=

k . . . 1 × (n − k) . . . 1
n . . . 1

=
(n − k)!k!

n!
=

1
(n

k)
.

This joint distribution is independent of set of exact locations A, and hence exchangeable. In addi-
tion, one can see the dependence from

P({ξ2 = 1} | {ξ1 = 1}) = k − 1
n − 1

̸= k
n − 1

= P({ξ2 = 1} | {ξ1 = 0}).

Example 1.13 (Conditionally independent sequence). Consider a finite set Y and a random vari-
able Y : Ω → Y with probability mass function p ∈ M(Y). Let X : Ω → XN be a conditionally i.i.d.
random sequence given random variable Y, with conditional distribution FX|y ≜ FX|{Y=y}. We can
write the joint finite dimensional distribution of the sequence X,

P
(
∩n

i=1 {Xi ⩽ xi}
)
= ∑

y∈Y
P
(
∩n

i=1 {Xi ⩽ xi} | {Y = y}
)

P{Y = y} = ∑
y∈Y

py

n

∏
i=1

FX|y(xi)

Since any finite dimensional distribution of the sequence X is symmetric in (x1, . . . xn), it follows
that X is exchangeable.

Definition 1.14. Let In,k ≜
{

i ∈ [n]k : ij distinct
}

. Then, the cardinality of this set is denoted by

(n)k ≜
∣∣In,k

∣∣ = n(n − 1) . . . (n − k + 1) =
(

n
k

)
k!.

Theorem 1.15 (De Finetti’s Theorem). If random sequence X : Ω → XN is exchangeable, then the sequence
X is i.i.d. conditioned on exchangeable σ-algebra E≜ σ(X).

Proof. To show the independence of exchangeable random sequence X, conditioned on exchangeable
σ-algebra E, it suffices to show that for bounded functions fi : R → R for each i, we have

E[
k

∏
i=1

fi(Xi) | E] =
k

∏
i=1

E[ fi(Xi) | E]

Using induction, it suffices to show for any two bounded functions f : Rk−1 → R and g : R → R, we
have

E[ f (X1, . . . , Xk−1)g(Xk) | E] = E[ f (X1, . . . , Xk−1) | E]E[g(Xk) | E]
For a bounded function ϕ : Rk → R, we can define the random average

An,k(ϕ)≜
1∣∣In,k
∣∣ ∑

i∈In,k

ϕ(Xi1 , Xi2 , . . . , Xik ).
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It is clear that the random variable An,k(ϕ) is En measurable and hence E[An,k(ϕ) | En] = An,k(ϕ). For
each i ∈ In,k, we can find a finite permutation on [n], such that α(ij) = j for j ∈ [k]. Since X is exchange-
able, the distribution of (Xi1 , . . . , Xik ) and (X1, . . . , Xk) are identical for each i ∈ In,k. Therefore, we have

An,k(ϕ) = E[An,k(ϕ) | En] =
1

|In,k| ∑
i∈In,k

E[ϕ(Xi1 , Xi2 , . . . , Xik )|En] = E[ϕ(X1, X2, . . . , Xk)|En].

Since En → E, using bounded convergence theorem for conditional expectations, we have

lim
n∈N

An,k(ϕ) = lim
n∈N

E[ϕ(X1, X2, . . . , Xk)|En] = E[ϕ(X1, X2, . . . , Xk)|E].

Let f and g be real-valued bounded functions on Rk−1 and R respectively, such that ϕ(x1, . . . , xk) ≜
f (x1, . . . , xk−1)g(xk). We also define ϕj(x1, . . . , xk−1)≜ f (x1, . . . , xk−1)g(xj) for each j ∈ [k − 1], to write

(n)k−1 An,k−1( f )nAn,1(g) = ∑
i∈In,k−1

f (Xi1 , . . . , Xik−1
)

n

∑
m=1

g(Xm)

= ∑
i∈In,k

f (Xi1 , . . . , Xik−1
)g(Xik ) + ∑

i∈In,k−1

k−1

∑
j=1

f (Xi1 , . . . , Xik−1
)g(Xij)

= (n)k An,k(ϕ) +
k−1

∑
j=1

(n)k−1 An,k−1(ϕj).

Dividing both sides by (n)k and rearranging terms, we get

An,k(ϕ) =
n

n − k + 1
An,k−1( f )An,1(g)− 1

n − k + 1

k−1

∑
j=1

An,k−1(ϕj),

Taking limits on both sides, we obtain the result

E[ f (X1, . . . , Xk−1)g(Xk)|E] = E[ f (X1, . . . , Xk−1)|E]E[g(Xk)|E].

Corollary 1.16 (De Finetti 1931). For any n ∈ N, A random binary sequence X : Ω →{0,1}N is exchangeable
iff there exists a distribution function F : [0,1]→ [0,1] such that for any n ∈ N, x ∈ {0,1}n, and sn ≜ ∑i xi

P(∩n
i=1 {Xi = xi}) =

∫ 1

0
psn(1 − p)n−sn dF(p).

Proof. For each n ∈ N, we define Yn ≜ 1
n ∑n

i=1 Xi. We observe that the random sequence Y : Ω → [0,1]N

is bounded as
0 ⩽ inf

n∈N
Yn ⩽ sup

n∈N

Yn ⩽ 1.

Hence, 0 ⩽ liminfn Yn ⩽ limsupn Yn ⩽ 1 exists and are bounded. We define the limit Y∞ ≜ limn∈N
Sn
n

when it exists. Since X is exchangeable, En ≜ σ(X1, . . . , Xn) is n-exchangeable, and thus En = σ(Yn).
Therefore, the exchangeable σ-algebra E = σ(Y∞). Let F be the distribution function for the random
variable Y∞. From Theorem 1.15, random vector (X1, . . . , Xn) is conditionally i.i.d. given σ(Y∞), with
P({Xi = 1} | σ(Y∞)) = Y∞. Then, we can write

P(∩n
i=1 {Xi = xi}) = E[E[

n

∏
i=1

1{Xi=xi} | E]] = E[Ysn
∞ (1 − Y∞)n−sn ] =

∫ 1

0
dF(p)psn(1 − p)n−sn .
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Example 1.17 (Polya’s Urn Scheme). We now discuss a non-trivial example of exchangeable ran-
dom variables. Consider a discrete time stochastic process {(Bn,Wn) : n ∈ N}, where Bn,Wn respec-
tively denote the number of black and white balls in an urn after n ∈ N draws. At each draw n, balls
are uniformly sampled from this urn. After each draw, one additional ball of the same color to the
drawn ball, is returned to the urn. We are interested in characterizing evolution of this urn, given
initial urn content (B0,W0). Let ξi be a random variable indicating the outcome of the ith draw being
a black ball. For example, if the first drawn ball is a black, then ξ1 = 1 and (B1,W1) = (B0 + 1,W0).
In general,

Bn = B0 +
n

∑
i=1

ξi = Bn−1 + ξn, Wn = W0 +
n

∑
i=1

(1 − ξi) = Wn−1 + 1 − ξn.

It is clear that Bn + Wn = B0 + W0 + n. Consider a random sequence of indicators ξ : Ω → {0,1}[n].
We can find the indices of black balls being drawn in first n draws, as

In(ξ)≜ {i ∈ [n] : ξi = 1} .

With this, we can write the probability of the event {ξ = x} for some binary sequence x ∈ {0,1}n as

P
(
∩n

i=1 {ξi = xi}
)
=

∏
|In(x)|
i=1 (B0 + i − 1)∏

n−|In(x)|
j=1 (W0 + j − 1)

∏n
i=1(B0 + W0 + i − 1)

Since this probability depends only on |In(x)| and not x for any n ∈ N, it shows that any finite
number of draws is finitely permutable event. That is, (ξ1, . . . ,ξn) ∈ En for each n ∈ N. Hence, any
sequence of draws ξ for Polya’s Urn scheme is exchangeable.
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