Lecture-29: Random Walks

1 Random walks

Definition 1.1. Let X C R, and consider a random step-size sequence X : Q) — XN such that E | X, | < co
for all n € N. The location of a particle after n steps is defined as S, £ Sy + Y ; X;. The random
sequence S : QO — RN is called a random walk. If X = {—1,1}, then the random walk is called simple.

Remark 1. Random walks are generalizations of renewal sequences. If step-size sequence X is a non-
negative sequence indicating inter-event times, then S, is the instant of the nth renewal event.

Definition 1.2. Consider a random sequence Z: () — R%+ such that Zy £ 0. We define Ty £ 0 and fix
k € N, to inductively define the hitting time to kth low as

T =inf{n>T 1:Zy<Zp_} =T +inf{neN:Zg_ 1, <Zy_,}. 1)

. - . z
The number of lows hit by process Z until time 7 is denoted by N, = Yo 1 (Ty<npand N: Q — Z7"
is the counting sequence of number of lows of process Z.

Proposition 1.3. Consider a random walk S : Q) — RN with an i.i.d. step-size sequence X : Q) — RN. Let Ty, be
the time instant that random walk S hits kth low for each k € IN, and N be the counting sequence for the number
of lows of random walk S. If EX; > 0, then P{Ty = co} > 0 and ENg < .

Proof. Let ¥, denote the natural filtration of step-size sequence X such that F, £ 0(Xy,...,X,) for each

n € IN. From the definition of the random time Ty, it is adapted to JF, for each k € IN.

Step 1. From the strong independence property for i.i.d. sequences, it follows that the distribution of
(X1, +1,-+-,XT_,+n) is identical to that of (Xj,..., X},) for any finite n € IN, and independent of
J1, ,- Therefore, the distribution of S, |, — St,_, is identical to that of S;, and is independent
of Fr, ,. Since we can write the difference Ty — Ty_; =inf{n € N : /' X7, _1,; <0}, it follows
that T is a random time, and Ty — Ty_; is independent of F7, | and distributed identically to
T;. Therefore, the sequence (Ty — Ty_1 :k € N) isiid.and T: Q — Zlf is a renewal sequence.

Step 2. We will show that P{T; < co} < 1 by showing that R_ is a set of transient states for Markov

process S. From the L! strong law of large numbers, we have lim,cn % =EX; > 0. Thus,
P {lim sup,, Sy < 0} = 0 and the states in IR_ are transient for random walk S.
Step 3. We observe that {Tj < oo} = ﬂ;‘zl {Ti < oo} = ﬁ;‘zl {T; — Tj_1 < oo}. By the definition of count-

ing sequence N and linearity of expectation, we get ENw = Y yen P{Tx < o0}. Since T is a
renewal sequence, we get ENoo = Ye P{T1 < 0o}F = g}%ii{ < o0 and the result follows.

O

1.1 Duality in random walks

Lemma 1.4 (Duality principle). Consider an exchangeable step-size sequence X : Q — XN. The joint dis-
tributions of the finite sequence (X1, X, -+, Xy,) and the reversed sequence (X, Xy,—1,- -+, X1) are identical for
any finite n € IN.

Proof. Since X : Q) — XN is an exchangeable sequence, the distribution of (X, ..., X,) and (Xa()r--+r Xan))
are identical for any n-permutation «. We apply this for a specific n-permutation a : [n] — [n] such that
a(i) £ n —i+1foreachi € [n]. The reversed sequence is (Xa(1)s+- -+ Xa(n)) for this n-permutation. [

Corollary 1.5. Consider a random walk S : Q — RN with exchangeable step-size sequence X : Q — RN.
(a) The distributions of Sy and S, — S,,_y are identical for any k € [n].
(b) The joint distributions of random vectors (Sy,...,Sn) and (Sy — Sy_1,...,Sy) are identical for any n € N.



Proof. Since X : Q) — XN is an exchangeable sequence, the distribution of (X,...,X,) and (Xa()r--+r Xa(n))
are identical for any n-permutation a. We define an n-permutation a : [n] — [1] such thata(i) £n —i+1
for each i € [n]. We apply this for n-permutation « : [n] — [n] such that «(i) = n — i + 1 for each i € [n].
(a) We observe that S, — S, = Zé‘:l Xy i1 = 21 1 Xa(i) for each k € [n]. Since X is exchangeable and

« is an n-permutation, the result follows.
(b) We observe that the sequence (S, — S,_1,...,S1) = (th(l)/ w(1) + Xa(2)r - ot X, )) which is

identically distributed to the sequence (S1,S»,...,S,) for exchangeable X and n- permutation a.

O

Proposition 1.6. Consider a random walk S : Q — RN with an i.i.d. step-size sequence X : QO — RN, and T be
the first hitting time of the random walk S to set of positive real numbers. If EX; > 0 then ET < oco.

Proof. We observe that T 2 inf{n € N : S,, > 0} is random time adapted to the natural filtration of step-
size sequence X. From the definition of random time T and duality principle, we can write

P{T>n}=P(N'_; {Sk <0}) = P(N'_; {Su < Sp_s}) = P{Sy <min{0,S1,...,5, 1}}.

This implies that the process S hits a new low at time 7, and in terms of the discrete process T: Q — ZN
defined in (I) for random walk S, we can write {T > n} = Ugen {Tx = n}. Therefore,

Et=1+ ) P{t>n}=1+) ) P{Tr=n}=1+E Z {7 <co} = 1 + ENeo.
neN neNkelN
The result follows from the finiteness of IEN,, from Proposition O

1.2 Range of a random walk

Definition 1.7. Consider a random walk S : Q — RN with Sy £ 0. The number of distinct values of
(So,++,Sn) is called range, denoted by R, £ |U/_,{Sx}|. We define the first hitting time of random

walk S to x € R as the stopping time 7, = inf{n € N : S, = x}.

Proposition 1.8. For a simple random walk, lim,cn EX = P {79 = co}.

Proof. We can define indicator function for Sy being distinct from Sy, ...,S5¢_1, as Ii £ 1« (Se£Se i}
i=1 —i
Then, we can write range R, in terms of indicator Iy as R, =1+ Y}, Iy. From the duality principle

P(N_y {Sk # Ski}) =P(N_, {Si #0}) =P{w >k}, keN.
Therefore, ER,, = Y f_, P {7 >k}, and the result follows from Cesaro mean. O

Theorem 1.9 (range). For a simple random walk with EXq = 2p =2(pv(1—-p))—1

Proof. From Proposition [1.8} it suffices to show that P {1y = oo} = [EX;]|.

Case 1. When EX; =0, we have p =1 — p = 1/2, and simple random walk S is recurrent and hence
P{TOIOO}IOZ]EX1.

Case 2. When EX; > 0, we have p > 1 — p > 1/2. From L! strong law of large numbers, we have

lim,en 57” = EX; > 0 and hence {S, > M infinitely often} almost surely for any M € R,. It
follows that 0 is a transient state and Py {79 < co} € [0,1) for any x > 0. For each x € Z, we
define Py {7y < co} to be the probability of simple random walk S hitting 0 in a finite time
conditioned on Sy = x. It follows that P_; {1y < co} = 1 and we define 8 £ P; {1y < c0}. From
the law of total probability,

P{rp<oo} =P{19<00, Xy =1} +P{19 <00, Xy =—1} =pp+ (1—p).

To compute the conditional probability B, we apply law of total probability, definition of con-
ditional probability, and Markov property of random walk S, to obtain

B="Pi{m <o} =pP {1 <oo}+ (1—-p)Ph{w <oo} =pPr {1y <oo} + (1—p).
From the Markov property and state transition homogeneity of random walk sequence, and
definition of conditional probability, it follows that
P, {TO < OO} =P {TO <00, < OO} = PST {T() < OO}PZ {Tl < OO} = (Pl {TO < OO})Z = ﬁz.

We conclude B = %p + 1 — p, and since B < 1 due to transience, we get = —F¥, and hence the

result follows.
Case 3. We can show similarly for the case when EX; < 0.



2 Random walk for GI/GI/1 queues

Definition 2.1 (GI/GI/1 queue). Consider a single server queue with infinite buffer size and FCFS
service discipline. We denote the random i.i.d. inter-arrival sequence by ¢ : QO — RY with an arbitrary
common distribution F : Ry — [0,1]. The random i.i.d. service time sequence is denoted by ¢ : QO — R
with an arbitrary common distribution G : R} — [0,1]. We assume & and ¢ are independent and ¢ = 0,
to define i.i.d. step-size sequence X : Q — RN as X,, £ 0;,_1 — &, for each n € N. The waiting time before
service for arrival 7 in the queue is denoted by W,,, where Wy £ 0 and for each n € N

W = (Wy1 + Xa) V 0. @)

For this GI/GI/1 queue, we associate a random walk sequence S : (2 — RZ+ with i.id. step-size se-
quence X, and we also define a random sequence M : () — IRH;I foralln € N, as

M, émax{So,...,Sn}.

Proposition 2.2. Consider a GI/GI/1 queue with random waiting time sequence for arrivals denoted by W : (0 —
]RE}I and associated random walk S : QO — RN, Then, we have foranyc >0

P{W, > c} = P{My > c} = P (Ukepn {5k 2 c}). ©)

Proof. From the Lindley’s recursion for waiting times and the definition of the associated random walk,
we get W, = max {0, W,_1 + X,,} . Iterating the above relation with Wy = 0, and using the definition of
random walk S yields

W, = max {0, X,, + max {0, W,,_» + X;,_1} } =max {0, Xy, Xy, + X1 + Wy—2} =max{0,S, — Sy—_1,...,5n}.
Using the duality principle for exchangeable random sequence X, we get W,, = M,, in distribution. O

Corollary 2.3. IfEX, > 0, then we have P {Weo > ¢} £ lim,en P{W,, > c} =1forall c € R.

Proof. It follows from Proposition [2.2| that P{W, > c} is non-decreasing in n and upper bounded by
unity. Hence, by monotone convergence theorem, the limit exists and is denoted by P {W >c} £
lim, ey P{W,, > c}. Therefore, by continuity of probability and Eq. (3), we have

P{We > c} =P{S, > c for some n}. 4)

If EX, =0, then the random walk is recurrent, and every state is almost surely reachable. If EX,, > 0,
then the random walk S will converge almost surely to positive infinity, from the L! strong law of large
numbers. 0

Remark 2. Tt follows from this corollary, that the stability condition EX,; < 0 or Ec;,,_; < EC, is necessary
for the existence of a stationary distribution.

Proposition 2.4 (Spitzer’s Identity). Let M, = max {0,51,S2,...,Sn} foralln € N, then EM,, =Y !, %]ES;’
Proof. From the definition of M;, we observe that
Mﬂ]]-{SWSO} = Mﬂ711{5n<0}/ Mﬂ]]-{Sn>0} = max{Sl,Sz, .. .,Sn} ]]'{Sn>0}'

Further, max{Sy,S,...,S,} = X1 + max{0,S, — S1,...,5, — S1}. We define an n-permutation « : [n] —
[n] such that a(i) =i —1fori € [n] \ {1} and a(1) = n. Then from exchangeability of X, we have (X; +
max{0,5; — Sq,...,5, — 51})11{5n>0} is equal in distribution to (X, + max{O,Sl,...,Sn_l})]l{sn>0} =
(Xn+M,_1)1 {s,>0}- Combining all these results, we can write the mean of M, as

EM, :IEMnIL{Sngo} +1EMnﬂ{5n>0} = ]EMn—lﬂ{Sngo} +]E(Xn + Mn_1)1{5”>0} =EM,_; +]EX111{S,,>O}'

Since X is an i.i.d. sequence and S, = }_I' ; X;, the tuple (X;,S,) has an identical joint distribution for all
i € [n]. Therefore, from the linearity of expectation and identical distribution of (X;,S,) for all i € [n],
we get

n
ES;; =ESylys, 50y = ) EXilyg, w01 = nEXylys, o0y = n(EMy — EM, ).
i=1
Since M, = My + Y. 1 (Mg — My_1) and M; = Sf , the result follows from linearity of expectation and
above result. O

Remark 3. Since Wy, = M,, in distribution, we have E[W,] = E[M,] = Y}_; +E[S]"].



3 Martingales for random walks

Proposition 3.1. Consider an i.i.d. step-size sequence X : QO — ZN such that | X,,| < M € Z.1. A random walk
S : Q) — ZN with the step size sequence X is a recurrent Markoo chain iff EXy = 0.

Proof. If EX,, # 0, the random walk is clearly transient since it will diverge to +-co0 depending on the
sign of EX;,.

Conversely, if EX;, = 0, then the random walk S is a martingale adapted to natural filtration F, of
the step-size sequence. Assume that the random walk starts at state Sp = x € Z_. We define sets

A2{-M,~-M+1,---,-2,—-1}, AyE{y+1,..y+M}, y>rx
Lett£inf{n € N:S, € AUA,} denote the first hitting time by the random walk S to either A or A,,.

It follows that 7 is a random time with respect to F,. Further, sup,, . [Stan| < y + M. From the optional
stopping theorem, we have ES; = [ESy = x. Thus, we have

x=EySc = ExSclis,cay +Stlgs cay] > ~MPe{St € A} +y(1 - Py {Sr € A}).

Rearranging the above equation, we get a bound on probability of random walk S hitting A over Ay as

—x
P {S, € Aforsomen} > Py {Sr € A} > nyrM'
Since the choice of y € Z was arbitrary, taking limit y — oo, we see that for any x € Z, we have
Py {Sy € A for some n} =1. Similarly forany x € Z_, taking B2 {1,2,--- ,M}and B, 2 {y — M,...,y — 1}
for y < x, we can show that Py {S,, € B for some n} = 1. Result follows from combining the above two
arguments to see that P, {S, € AU B for some n} =1 for any x € Z. O

Proposition 3.2. Consider a random walk S : QO — RN with i.i.d. step-size sequence X : Q — RN with common
mean E[X1] # 0. For a,b > 0, we define the hitting time of the walk S exceeding a positive threshold b or going
below a negative threshold —a as

Té{nEJN:Sn>borSn<—a}.
Let Py denote the probability that the walk hits a value greater than b before it hits a value less than —a. That is,
P, £ P{S: >b}. Then, for 6 # 0 such that FEe%*1 = 1, we have P, ~ % The above approximation is an
equality when step size is unity and a and b are integer valued.

Proof. For any a,b > 0, we can define stopping times
T, =inf{n e N:S, > b}, T,=inf{neN:S, < —a}.

Then, T = 1, A T_,4, and we are interested in computing the probability P, = P {1, < 7_,}. We define a
random sequence Z : () — ]R]I;I such that Z,, £ ¢*n for all n € N, where 6 # (0 is chosen so that Ee?X1 =1.
Hence, it follows that Z is a martingale with unit mean. We observe that sup, . | Zean| < e\ e 0a,
From the optional stopping theorem, we get Ee?>t = 1. Thus, we get

1= IE[EGSTI{T;,<T_,,}] + E[eesTﬂ{Tb>T_u}]'

We can approximate e?5 1(y, <7,y by eeb]l{rb<na} and ef5¢ 1ig>7 ) by e’Q”I{TPLa}, by neglecting the
overshoots past the thresholds b and —a. Therefore, we have 1 ~ €% P, +e~%(1 — P,). O

Corollary 3.3. Let T2 1, AT_g and P, = P {1, < T_,}, then ET ~ M}E“igl_lj”).

Proof. Repeat the above proof for zero mean martingale (S, — n[EX; : n € IN) to obtain ES; = EX;ET.
Further, we approximate St1( ¢ 1 by b1y, ooy and Sclyg oy by —al(y . 1 by neglecting the
overshoots past the thresholds b and —a. O



A Strong independence property

Consider a filtration Fo = (J; : t € T) and a random time 7 : Q) — T such that {t <t} € F; forallt € T.
The stopped a-algebra is defined as

Fr2{AE€T: AN{T <t} €T forallt € T}.

Lemma A.1 (Strong independence property). Let X : Q — RT be an i.i.d. process adapted to Fo with
distribution function F : Ry — [0,1]. The process Y : Q — RT defined as Yy & X4 is independent of Fr and
distributed identically to X.

Proof. Consider 0 < t; < --- < t,, € T and (y1,...,ym) € R™. Then, we observe that for any A =
ﬁ}“:l {XS]. < x]-} for s, < T, we have

P(“l’?:l {Ye gyk}ﬂA) = P(mlrcnzl {Xers, gyk}ﬂﬁ?ﬂ {Xs]' < xj}) -

TEGOTTEG).
=1 j=1

k

It follows that process Y is independent of F; and distributed identically to X. O
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