
Lecture-29: Random Walks

1 Random walks

Definition 1.1. Let X⊆ R, and consider a random step-size sequence X : Ω → XN such that E |Xn|< ∞
for all n ∈ N. The location of a particle after n steps is defined as Sn ≜ S0 + ∑n

i=1 Xi. The random
sequence S : Ω → RN is called a random walk. If X= {−1,1}, then the random walk is called simple.

Remark 1. Random walks are generalizations of renewal sequences. If step-size sequence X is a non-
negative sequence indicating inter-event times, then Sn is the instant of the nth renewal event.

Definition 1.2. Consider a random sequence Z : Ω → RZ+ such that Z0 ≜ 0. We define T0 ≜ 0 and fix
k ∈ N, to inductively define the hitting time to kth low as

Tk ≜ inf
{

n > Tk−1 : Zn ⩽ ZTk−1

}
= Tk−1 + inf

{
n ∈ N : ZTk−1+n ⩽ ZTk−1

}
. (1)

The number of lows hit by process Z until time n is denoted by Nn ≜ ∑k∈N1{Tk⩽n}, and N : Ω → Z
Z+
+

is the counting sequence of number of lows of process Z.

Proposition 1.3. Consider a random walk S : Ω → RN with an i.i.d. step-size sequence X : Ω → RN. Let Tk be
the time instant that random walk S hits kth low for each k ∈ N, and N be the counting sequence for the number
of lows of random walk S. If EX1 > 0, then P{T1 = ∞} > 0 and EN∞ < ∞.

Proof. Let F• denote the natural filtration of step-size sequence X such that Fn ≜ σ(X1, . . . , Xn) for each
n ∈ N. From the definition of the random time Tk, it is adapted to F• for each k ∈ N.
Step 1. From the strong independence property for i.i.d. sequences, it follows that the distribution of

(XTk−1+1, . . . , XTk−1+n) is identical to that of (X1, . . . , Xn) for any finite n ∈ N, and independent of
FTk−1 . Therefore, the distribution of STk−1+n − STk−1 is identical to that of Sn, and is independent
of FTk−1 . Since we can write the difference Tk − Tk−1 = inf

{
n ∈ N : ∑n

i=1 XTk−1+i ⩽ 0
}

, it follows
that Tk is a random time, and Tk − Tk−1 is independent of FTk−1 and distributed identically to
T1. Therefore, the sequence (Tk − Tk−1 : k ∈ N) is i.i.d. and T : Ω → ZN

+ is a renewal sequence.
Step 2. We will show that P{T1 < ∞} < 1 by showing that R− is a set of transient states for Markov

process S. From the L1 strong law of large numbers, we have limn∈N
Sn
n = EX1 > 0. Thus,

P
{

limsupn Sn ⩽ 0
}
= 0 and the states in R− are transient for random walk S.

Step 3. We observe that {Tk < ∞}= ∩k
j=1

{
Tj < ∞

}
= ∩k

j=1
{

Tj − Tj−1 < ∞
}

. By the definition of count-
ing sequence N and linearity of expectation, we get EN∞ = ∑k∈N P{Tk < ∞}. Since T is a
renewal sequence, we get EN∞ = ∑k∈N P{T1 < ∞}k = P{T1<∞}

P{T1=∞} < ∞ and the result follows.

1.1 Duality in random walks

Lemma 1.4 (Duality principle). Consider an exchangeable step-size sequence X : Ω → XN. The joint dis-
tributions of the finite sequence (X1, X2, · · · , Xn) and the reversed sequence (Xn, Xn−1, · · · , X1) are identical for
any finite n ∈ N.

Proof. Since X : Ω→XN is an exchangeable sequence, the distribution of (X1, . . . , Xn) and (Xα(1), . . . , Xα(n))

are identical for any n-permutation α. We apply this for a specific n-permutation α : [n]→ [n] such that
α(i)≜ n − i + 1 for each i ∈ [n]. The reversed sequence is (Xα(1), . . . , Xα(n)) for this n-permutation.

Corollary 1.5. Consider a random walk S : Ω → RN with exchangeable step-size sequence X : Ω → RN.
(a) The distributions of Sk and Sn − Sn−k are identical for any k ∈ [n].
(b) The joint distributions of random vectors (S1, . . . ,Sn) and (Sn − Sn−1, . . . ,Sn) are identical for any n ∈ N.

1



Proof. Since X : Ω→XN is an exchangeable sequence, the distribution of (X1, . . . , Xn) and (Xα(1), . . . , Xα(n))

are identical for any n-permutation α. We define an n-permutation α : [n]→ [n] such that α(i)≜ n− i+ 1
for each i ∈ [n]. We apply this for n-permutation α : [n]→ [n] such that α(i)≜ n − i + 1 for each i ∈ [n].
(a) We observe that Sn − Sn−k = ∑k

i=1 Xn−i+1 = ∑k
i=1 Xα(i) for each k ∈ [n]. Since X is exchangeable and

α is an n-permutation, the result follows.
(b) We observe that the sequence (Sn − Sn−1, . . . ,Sn) = (Xα(1), Xα(1) + Xα(2), . . . ,∑n

i=1 Xα(i)), which is
identically distributed to the sequence (S1,S2, . . . ,Sn) for exchangeable X and n-permutation α.

Proposition 1.6. Consider a random walk S : Ω → RN with an i.i.d. step-size sequence X : Ω → RN, and τ be
the first hitting time of the random walk S to set of positive real numbers. If EX1 > 0 then Eτ < ∞.

Proof. We observe that τ ≜ inf{n ∈ N : Sn > 0} is random time adapted to the natural filtration of step-
size sequence X. From the definition of random time τ and duality principle, we can write

P{τ > n} = P(∩n
k=1 {Sk ⩽ 0}) = P(∩n

k=1 {Sn ⩽ Sn−k}) = P{Sn ⩽ min{0,S1, . . . ,Sn−1}} .

This implies that the process S hits a new low at time n, and in terms of the discrete process T : Ω → ZN
+

defined in (1) for random walk S, we can write {τ > n} = ∪k∈N {Tk = n} . Therefore,

Eτ = 1 + ∑
n∈N

P{τ > n} = 1 + ∑
n∈N

∑
k∈N

P{Tk = n} = 1 + E ∑
k∈N

1{Tk<∞} = 1 + EN∞.

The result follows from the finiteness of EN∞ from Proposition 1.3.

1.2 Range of a random walk

Definition 1.7. Consider a random walk S : Ω → RN with S0 ≜ 0. The number of distinct values of
(S0, · · · ,Sn) is called range, denoted by Rn ≜

∣∣∪n
k=0 {Sk}

∣∣. We define the first hitting time of random
walk S to x ∈ R as the stopping time τx ≜ inf{n ∈ N : Sn = x} .

Proposition 1.8. For a simple random walk, limn∈N
ERn

n = P{τ0 = ∞}.

Proof. We can define indicator function for Sk being distinct from S0, . . . ,Sk−1, as Ik ≜ 1∩k
i=1{Sk ̸=Sk−i}.

Then, we can write range Rn in terms of indicator Ik as Rn = 1 + ∑n
k=1 Ik. From the duality principle

P(∩k
i=1 {Sk ̸= Sk−i}) = P(∩k

i=1 {Si ̸= 0}) = P{τ0 > k} , k ∈ N.

Therefore, ERn = ∑n
k=0 P{τ0 > k} , and the result follows from Cesàro mean.

Theorem 1.9 (range). For a simple random walk with EX1 = 2p − 1, limn∈N
ERn

n = 2(p ∨ (1 − p))− 1.

Proof. From Proposition 1.8, it suffices to show that P{τ0 = ∞} = |EX1|.
Case 1. When EX1 = 0, we have p = 1 − p = 1/2, and simple random walk S is recurrent and hence

P{τ0 = ∞} = 0 = EX1.
Case 2. When EX1 > 0, we have p > 1 − p > 1/2. From L1 strong law of large numbers, we have

limn∈N
Sn
n = EX1 > 0 and hence {Sn ⩾ M infinitely often} almost surely for any M ∈ R+. It

follows that 0 is a transient state and Px {τ0 < ∞} ∈ [0,1) for any x > 0. For each x ∈ Z, we
define Px {τ0 < ∞} to be the probability of simple random walk S hitting 0 in a finite time
conditioned on S0 = x. It follows that P−1 {τ0 < ∞} = 1 and we define β ≜ P1 {τ0 < ∞}. From
the law of total probability,

P{τ0 < ∞} = P{τ0 < ∞, X1 = 1}+ P{τ0 < ∞, X1 = −1} = pβ + (1 − p).

To compute the conditional probability β, we apply law of total probability, definition of con-
ditional probability, and Markov property of random walk S, to obtain

β = P1 {τ0 < ∞} = pP2 {τ0 < ∞}+ (1 − p)P0 {τ0 < ∞} = pP2 {τ0 < ∞}+ (1 − p).

From the Markov property and state transition homogeneity of random walk sequence, and
definition of conditional probability, it follows that

P2 {τ0 < ∞} = P2 {τ0 < ∞,τ1 < ∞} = PSτ1
{τ0 < ∞}P2 {τ1 < ∞} = (P1 {τ0 < ∞})2 = β2.

We conclude β = β2 p + 1 − p, and since β < 1 due to transience, we get β = 1−p
p , and hence the

result follows.
Case 3. We can show similarly for the case when EX1 < 0.
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2 Random walk for GI/GI/1 queues

Definition 2.1 (GI/GI/1 queue). Consider a single server queue with infinite buffer size and FCFS
service discipline. We denote the random i.i.d. inter-arrival sequence by ξ : Ω → RN

+ with an arbitrary
common distribution F : R+ → [0,1]. The random i.i.d. service time sequence is denoted by σ : Ω → RN

+

with an arbitrary common distribution G : R+ → [0,1]. We assume ξ and σ are independent and σ0 ≜ 0,
to define i.i.d. step-size sequence X : Ω → RN as Xn ≜ σn−1 − ξn for each n ∈ N. The waiting time before
service for arrival n in the queue is denoted by Wn, where W0 ≜ 0 and for each n ∈ N

Wn = (Wn−1 + Xn) ∨ 0. (2)

For this GI/GI/1 queue, we associate a random walk sequence S : Ω → RZ+ with i.i.d. step-size se-
quence X, and we also define a random sequence M : Ω → RN

+ for all n ∈ N, as

Mn ≜ max{S0, . . . ,Sn} .

Proposition 2.2. Consider a GI/GI/1 queue with random waiting time sequence for arrivals denoted by W : Ω →
RN

+ and associated random walk S : Ω → RN. Then, we have for any c ⩾ 0

P{Wn ⩾ c} = P{Mn ⩾ c} = P
(
∪k∈[n] {Sk ⩾ c}

)
. (3)

Proof. From the Lindley’s recursion for waiting times and the definition of the associated random walk,
we get Wn = max{0,Wn−1 + Xn} . Iterating the above relation with W0 = 0, and using the definition of
random walk S yields

Wn =max{0, Xn + max{0,Wn−2 + Xn−1}}=max{0, Xn, Xn + Xn−1 + Wn−2}=max{0,Sn − Sn−1, . . . ,Sn} .

Using the duality principle for exchangeable random sequence X, we get Wn = Mn in distribution.

Corollary 2.3. If EXn ⩾ 0, then we have P{W∞ ⩾ c}≜ limn∈N P{Wn ⩾ c} = 1 for all c ∈ R.

Proof. It follows from Proposition 2.2 that P{Wn ⩾ c} is non-decreasing in n and upper bounded by
unity. Hence, by monotone convergence theorem, the limit exists and is denoted by P{W∞ ⩾ c} ≜
limn∈N P{Wn ⩾ c}. Therefore, by continuity of probability and Eq. (3), we have

P{W∞ ⩾ c} = P{Sn ⩾ c for some n} . (4)

If EXn = 0, then the random walk is recurrent, and every state is almost surely reachable. If EXn > 0,
then the random walk S will converge almost surely to positive infinity, from the L1 strong law of large
numbers.

Remark 2. It follows from this corollary, that the stability condition EXn < 0 or Eσn−1 < Eξn is necessary
for the existence of a stationary distribution.

Proposition 2.4 (Spitzer’s Identity). Let Mn ≜max{0,S1,S2, . . . ,Sn} for all n∈N, then EMn =∑n
k=1

1
k ES+

k .

Proof. From the definition of Mn, we observe that

Mn1{Sn⩽0} = Mn−11{Sn⩽0}, Mn1{Sn>0} = max{S1,S2, . . . ,Sn}1{Sn>0}.

Further, max{S1,S2, . . . ,Sn} = X1 + max{0,S2 − S1, . . . ,Sn − S1}. We define an n-permutation α : [n]→
[n] such that α(i) = i − 1 for i ∈ [n] \ {1} and α(1) = n. Then from exchangeability of X, we have (X1 +
max{0,S2 − S1, . . . ,Sn − S1})1{Sn>0} is equal in distribution to (Xn + max{0,S1, . . . ,Sn−1})1{Sn>0} =

(Xn + Mn−1)1{Sn>0}. Combining all these results, we can write the mean of Mn as

EMn =EMn1{Sn⩽0}+EMn1{Sn>0} =EMn−11{Sn⩽0}+E(Xn + Mn−1)1{Sn>0} =EMn−1 +EXn1{Sn>0}.

Since X is an i.i.d. sequence and Sn = ∑n
i=1 Xi, the tuple (Xi,Sn) has an identical joint distribution for all

i ∈ [n]. Therefore, from the linearity of expectation and identical distribution of (Xi,Sn) for all i ∈ [n],
we get

ES+
n = ESn1{Sn>0} =

n

∑
i=1

EXi1{Sn>0} = nEXn1{Sn>0} = n(EMn − EMn−1).

Since Mn = M1 + ∑n
i=1(Mk − Mk−1) and M1 = S+

1 , the result follows from linearity of expectation and
above result.

Remark 3. Since Wn = Mn in distribution, we have E[Wn] = E[Mn] = ∑n
k=1

1
k E[S+

k ].
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3 Martingales for random walks

Proposition 3.1. Consider an i.i.d. step-size sequence X : Ω → ZN such that |Xn|⩽ M ∈ Z+. A random walk
S : Ω → ZN with the step size sequence X is a recurrent Markov chain iff EX1 = 0.

Proof. If EXn ̸= 0, the random walk is clearly transient since it will diverge to ±∞ depending on the
sign of EXn.

Conversely, if EXn = 0, then the random walk S is a martingale adapted to natural filtration F• of
the step-size sequence. Assume that the random walk starts at state S0 = x ∈ Z+. We define sets

A ≜ {−M,−M + 1, · · · ,−2,−1} , Ay ≜ {y + 1, . . . ,y + M} , y > x.

Let τ ≜ inf
{

n ∈ N : Sn ∈ A ∪ Ay
}

denote the first hitting time by the random walk S to either A or Ay.
It follows that τ is a random time with respect to F•. Further, supn∈N |Sτ∧n|⩽ y+ M. From the optional
stopping theorem, we have ESτ = ES0 = x. Thus, we have

x = ExSτ = Ex[Sτ1{Sτ∈A} + Sτ1{Sτ∈Ay}]⩾−MPx {Sτ ∈ A}+ y(1 − Px {Sτ ∈ A}).

Rearranging the above equation, we get a bound on probability of random walk S hitting A over Ay as

Px {Sn ∈ A for some n}⩾ Px {Sτ ∈ A}⩾ y − x
y + M

.

Since the choice of y ∈ Z+ was arbitrary, taking limit y → ∞, we see that for any x ∈ Z+, we have
Px {Sn ∈ A for some n}= 1. Similarly for any x ∈Z−, taking B≜ {1,2, · · · , M} and By ≜ {y − M, . . . ,y − 1}
for y < x, we can show that Px {Sn ∈ B for some n} = 1. Result follows from combining the above two
arguments to see that Px {Sn ∈ A ∪ B for some n} = 1 for any x ∈ Z.

Proposition 3.2. Consider a random walk S : Ω → RN with i.i.d. step-size sequence X : Ω → RN with common
mean E[X1] ̸= 0. For a,b > 0, we define the hitting time of the walk S exceeding a positive threshold b or going
below a negative threshold −a as

τ ≜ {n ∈ N : Sn ⩾ b or Sn ⩽−a} .

Let Pb denote the probability that the walk hits a value greater than b before it hits a value less than −a. That is,
Pb ≜ P{Sτ ⩾ b} . Then, for θ ̸= 0 such that EeθX1 = 1, we have Pb ≈ 1−e−θa

eθb−e−θa . The above approximation is an
equality when step size is unity and a and b are integer valued.

Proof. For any a,b > 0, we can define stopping times

τb = inf{n ∈ N : Sn ⩾ b} , τ−a = inf{n ∈ N : Sn ⩽−a} .

Then, τ = τb ∧ τ−a, and we are interested in computing the probability Pb = P{τb < τ−a}. We define a
random sequence Z : Ω → RN

+ such that Zn ≜ eθSn for all n ∈ N, where θ ̸= 0 is chosen so that EeθX1 = 1.
Hence, it follows that Z is a martingale with unit mean. We observe that supn∈N |Zτ∧n| ⩽ eθb ∨ e−θa.
From the optional stopping theorem, we get EeθSτ = 1. Thus, we get

1 = E[eθSτ1{τb<τ−a}] + E[eθSτ1{τb>τ−a}].

We can approximate eθSτ1{τb<τ−a} by eθb
1{τb<τ−a} and eθSτ1{τb>τ−a} by e−θa

1{τb>τ−a}, by neglecting the
overshoots past the thresholds b and −a. Therefore, we have 1 ≈ eθbPb + e−θa(1 − Pb).

Corollary 3.3. Let τ ≜ τb ∧ τ−a and Pb ≜ P{τb < τ−a}, then Eτ ≈ bPb−a(1−Pb)
EX1

.

Proof. Repeat the above proof for zero mean martingale (Sn − nEX1 : n ∈ N) to obtain ESτ = EX1Eτ.
Further, we approximate Sτ1{τb<τ−a} by b1{τb<τ−a} and Sτ1{τb>τ−a} by −a1{τb>τ−a} by neglecting the
overshoots past the thresholds b and −a.
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A Strong independence property

Consider a filtration F• ≜ (Ft : t ∈ T) and a random time τ : Ω → T such that {τ ⩽ t} ∈ Ft for all t ∈ T.
The stopped α-algebra is defined as

Fτ ≜ {A ∈ F∞ : A ∩ {τ ⩽ t} ∈ Ft for all t ∈ T} .

Lemma A.1 (Strong independence property). Let X : Ω → RT be an i.i.d. process adapted to F• with
distribution function F : R+ → [0,1]. The process Y : Ω → RT defined as Yt ≜ Xτ+t is independent of Fτ and
distributed identically to X.

Proof. Consider 0 < t1 < · · · < tm ∈ T and (y1, . . . ,ym) ∈ Rm. Then, we observe that for any A =

∩n
j=1

{
Xsj ⩽ xj

}
for sn ⩽ τ, we have

P
(
∩m

k=1
{

Ytk ⩽ yk
}⋂

A
)
= P

(
∩m

k=1
{

Xτ+tk ⩽ yk
}⋂

∩n
j=1

{
Xsj ⩽ xj

})
=

m

∏
k=1

F(yk)
n

∏
j=1

F(xj).

It follows that process Y is independent of Fτ and distributed identically to X.
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