E2 236 Homework-02 Feb 03, 2022

1. Let V be a finit dimensional vector space equipped with an inner product < -,- >y. The vector
space of linear maps V — V is isomorphic to the bilinear functionals V x V — IR. The subspace of
self-adjoint maps is isomorphic to the symmetric biliniear functionals. Therefore an inner product
on V must have the form (x,y) —< x, My >y for some selft adjoint linear map M : V — V. Denote
this map by < -,- >s. Prove that M is positive definite iff < -,- >, is an inner product.

2. Suppose X is a finit set of size n equipped with the counting measure. Consider the set of functions
X — IR. This is an n -dimensional Hilbert space V. We can associate a symmetric function & :
X x X — R with a self-adjoin lincar map K : V — V,

n
= L Kk

We say k is positive definite iff corresponding transformation k is positive definite. Now prove that
a symmetric function k : X x X — R is positive definite iff k is a kernel.

3. Mercer’s Theorem If Gram matrix K € R"*" is positive definite, each element can be represented
as:

K(xix;) = 0 (xi) 9 (x))

where ¢ : ¥ — D is the feature map to higher dimensional space. This can be proved by diagonal-
izing the Gram matrix as:

K=U"AU

where A is the diagonal matrix whose elements are the eigen values. Since it is diagonal, it can be
directly factored, and K can be written as :

:(A%U)H AU
K(xi,x7) = (A i) AZU
(xz’x]) = ¢(xl) ( )

(a) Show that the Gram Matrix K defined by inner product : x(x;,x;) =< x;,x; > is Positive
Definite.

=12

(b) Gaussian Kernel is defined by: k;;j=e 20> . Express this is as inner product of feature maps
in the Hilbert Space.

4. Cauchy-Schwarz for RKHS. Let K : XX x X — IR be a PDS kernel. For any x € X, define &, : X —
R for all X' € X as follows:
D, (¥) = K(x,x).

We define IHj as the set of finite linear combinations of such functions ®,:
Hy, = {Zaiq)xf ra; € R, x; € X, |I| < 00}.
il
Now, we introduce the operation (.,.) on Hp x Hy defined for all f,g € Ho with f = Y ;c;a;®P,, and
g =Y jesbj®x; by

<feg>: Z aiij(xi,xj).

il jel

Show that for any f € Hg and any x € X,
(fP2)* < (o) (P D).
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5. Let ki,k> be kernels over IR” x R”, and k3 be a kernel over RY x RY. Let a € Ry be a positive

real number, f : R” — RR be a real-valued function, ¢ : R” — IR? be a function mapping from R”

to IR?, and let p be a polynomial over R with positive coefficients. For each of the functions k

below, state whether it is necessarily a kernel. If you think it is, prove it; if you think it isn’t, give a
counter-example.

(@) k(x,y) =ki(xy) +k(xy)

(b) k(x,y) =ki(x,y) —ka(x.y)
(©) k(x,y) =ak;(x,y)

(d) k(x,y) =—aki(xy)

(e) k(x,y) = ki(x,y) ka(x,y)
() k(xy) = f(x) f(y)

@ k(xy) =k (0(x).9())

(h) k(x,y) = p(’ﬂ (x,y))

6. Axis-aligned rectangles. Consider, X = R2 and the concept class C C {0, l}x is the set of all axis-
aligned rectangles in IR?. Thus, each concept c is the set of points inside a particular axis-aligned
rectangle. We note that an unlabeled sample x € X™ consist of feature vectors x; = (x;1,x2) € R?
foralli € [m] A concept ¢ € C is defined by four real numbers /,r,b,¢, such that

c(xi) = Ly, (xi1) L (xi2).

(a) Given a labeled sample z € (X x {0,1})™, let S = {i € [m] : y; = 1} be the indices of the point
inside the rectangle. Then, the data driven concept ¢ : X — {0,1} is proposed in terms of
parameters (f, f,@,f) defined as

[=inf{x;:icS}, F=sup{xy:icS}, b=inf{xp:icS}, f=sup{xp:icS}.

Find the empirical loss defined as R(¢) = Ly | 1 (i)} (#))

(b) Let D: B(X) — [0, 1] be an unknown distribution for a point location in IR?, and an unlabeled
sample is drawn i.i.d. . The (I,r,b,t) be the parameters for the true concept ¢ € C, such that the
probability of a point X; € X drawn according to distribution D is labeled 1 is given by

p(Lr,b,t) £ Ex Ly (i) Lp g (xi2).
Find the generalization risk written as R(¢) = Ey, {c(x;) # é:(x;) } in term of the given labeled
sample z € (X x {0,1})™. (2)
(c) Can you show that P, {R(¢) > e} <4(1—g/4)™? 0}

7. XOR Problem Consider a XOR problem using SVMs, now use kernel K (x,x;) = (1 +x"x;)? to
solve the problem. Give the optimum Hyperplane equation.

8. Consider the data set https://archive.ics.uci.edu/ml/datasets/iris. We are in-
trested in consutructing a linear classifier for this data based on SVM.
Input:
1. Training set (X,y)
2. Parameter C
3. Kernel type (linear/polynomial/Gaussian)

4. Kernel parameter

Kernels:


https://archive.ics.uci.edu/ml/datasets/iris
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1. Linear

2. Polynomial kernel k(x,y) = (x”y+ 1)?, Kernel parameter = d

2
_ lx=ll

gy ), Kernel parameter = g

3. Gaussian kernal k(x,y) = exp (

Output:

Program should return as output an SVM model and error as you did in Assignment 1. You can use
your first homework as a starting point.



