Lecture-02: Review of Linear Algebra and Convex
Optimization

1 Review of Linear Algebra

1.1 Vector Space

Definition 1.1 (Vector addition). A set V is set to be equipped with vector addition mapping + : V' x
V — V defined by + (v, w) = v+ w for any two elements v,w € V, if this mapping satisfies the following
four axioms.

1. Associativity: For all vectors u,v,w € V, we have u + (v + w) = (u 4+ v) + w.

2. Commutativity: For all vectors u,v € V, we have u +v =v 4 u.

3. Additive identity: There exists a zero vector 0 € V,suchthatu + 0 =uforallu € V.

4. Additive inverse: For each vector u € V, there exists an additive inverse —u € V such that u +

(—u)=0.

Definition 1.2 (Scalar multiplication). A set V equipped with vector addition 4+ : V x V — V is also
equipped with field scalar multiplication mapping - : F x V — V defined by -(«,v) = av € V, if this
mapping satisfies the following four axioms.

1. Field compatibility: For all scalars a, 5 € F and vector u € V, we have a(Bu) = (ap)u.

2. Multiplicative identity: There exists a multiplicative identity element 1 € IF, such that 1u = u for

allueVv.

3. Distributivity over vector addition: For each scalar « € IF and vectors u,v € V, we have a(vu) =
au + av.

4. Distributivity over field addition: For all scalars &, 8 € F and vector u € V, we have (a + B)u =
au + Bu.

Definition 1.3. A vector space over the field IF is a set V equipped with vector addition +:V x V — V
and scalar multiplication - : F x V — V.

Definition 1.4. A set of vectors W C V are called linearly independent, if for any nonzero vector a € IF"
with finite ), &y, we have ) ,cwapw #0 € V.

Definition 1.5. The span of a set of vectors W C V is defined by
Span(W) £ { Z apw:a e RY, Z Ky ﬁnite}.
weW weW

Definition 1.6. A basis of any vector space V, is a spanning set of linearly independent vectors.
Theorem 1.7. All bases of a vector space V have identical cardinality, and defined to be its dimension.
Example 1.8 (Vector space). Following are some common examples of vector spaces.

1. Euclidean space of N-dimensions, denoted by RN.

2. Space of continuous functions over a compact subset [a,b] denoted by C([a,b]).

3. Space of random variables defined over probability space (Q),F,P) with finite pth moment de-
noted by L”.



1.2 Inner Product Space

A inner product space is a vector space equipped with an inner product denoted by (-,-) : V x V — R that
satisfies the following axioms.

1. Symmetry: For all vectors x,y € V, we have (x,y) = (y,x).
2. Linearity: For all scalars a, € FF and vectors x,y,z € V, we have (ax + By,z) = a (x,z) + B (y,z).
3. Definiteness: For all vectors x € V, we have (x,x) >0, and (x,x) = 0iff x =0.

Example 1.9 (inner product spaces). Following are some common examples of inner product spaces.

1. For the vector space V = RN of N-dimensional vectors, the inner product is defined as (x,y) £

2Ty = YN xy;.

2. For vector space V = C(RN) of continuous functions, the inner product is defined as (f,g) =

Jrn (f,8)(£)dt.

3. For the vector space of random variables, the inner product (-,-) : LP x L7 — R is defined as
(X,Y) £ EXY for conjugate pairs p,q > 1such that1/p+1/g=1

1.3 Norms
Definition 1.10. Norm is a mapping ||-|| : V — R that satisfy the following axioms.

1. Definiteness: For all vectors v € V, we have |[v|| = 0iff v = 0.

2. Homogeneity: For all scalars & € R and vectors v € V, we have ||av|| = |a|||7]|.

3. Triangle inequality: For all vectors v,w € V, we have ||v + w|| < ||v|| + ||w]|.
Example 1.11 (Norms). For a vector space V = RN of N dimensional vectors, we can define the p-norm
for p>1as [|x|, = (Zf\il |xi\p)% for all x € RN. For p = 1, we have ||x||; = XV, |x;|. For p = oo, we
have ||x||, = max; |x;|. For p = 2, the norm is Euclidean norm.

Proposition 1.12 (Holder’s Inequality). Let p,q > 1 be a conjugate pair, i.e. % + % =1 Then,

[y < llxll, llyll, for all x,y € RY.

Proof. The Holder’s inequality is trivially true if x = 0 or y = 0. Hence, we assume that ||x|| ||y|| > 0, and

leta = ”‘;“ill and b = ”g h" . We will use the Young’s inequality %ap + %bq > ab for all a,b > 0, that implies
P q

that

il ! T,
plixlly — allylld = xll, Hyll,
Since |(x,y)| <N |x| [yi], we get the result by summing both sides over i € [N] in the above inequality.

, foralli € [N].

2 Review of Convex Optimization

Let X CRN for N >1and f:X — R be a smooth function.

Definition 2.1 (Gradient). The gradient of function f at point x € X is defined as the column vector
Vf(x) € RN, where the entry i € [N] is defined as V f;(x) £ g—i (x).

Definition 2.2 (Hessian). The Hessian of function f at point x € X is denoted by the matrix V2f(x) €
2

RN*N, where the entry (i,j) € [N] x [N] is defined as V2f; ;(x) = %aij(x).

Remark 1. Let f : RN — R be a smooth function over N-dimensional reals. Then, we can write its Taylor

series expansion around the neighborhood of x € R, in terms of the gradient vector Vf(x) € RN and

the Hessian matrix V2f(x) € RN*N, as

F) = £ () + (V) g = x)) + 5 (v =0, V2~ 0)) +ollly — ¥ M)



Definition 2.3 (Stationary Point). A point x € X is called a stationary point of f : X — R, if f attains a
local extremum at x.

Remark 2. If f : X — R is smooth, then V f(x) = 0 at a stationary point x € X.

2.1 Convexity

Definition 2.4 (Convex Set). A set X is called convex if for all x,y € X and « € [0,1], the convex combi-
nation ax + &y € X where & = (1 — a).

Definition 2.5 (Convex Hull). A convex hull of a set A is the smallest convex set including A, i.e.
conv(A) & {Yyeaaxx:0<ay <1, cqay =1}
Definition 2.6. Let X C RVN. For a function f : X — R, we define its epigraph as

Epi(f) = {(xy) € X x R:y > f(x)}.

Definition 2.7. A function f : X — R is convex if the associated domain X and epigraph Epi(f) are
convex sets.

Theorem 2.8. Let X C RN be a convex set. Then the following are equivalent statements.
1. f:X — Ris a convex function.
2. Forall a € [0,1], we have f (ax + (1 —a)y) < af(x) + (1 —a)f(y).
3. For differentiable f, we have f(y) — f(x) > (Vf(x),y — x) forall x,y € X.
4. For twice differentiable f, we have V> f = 0, i.e. V2f is a positive semi-definite matrix.

Proof. For convex set X C RN and a function f : X — R, we will show that statement 1 implies statement
2, which implies statement 3, which implies statement 4, which implies statement 1.

1 = 2: Let(x,f(x)),(y, f(y)) € Epi(f) for x,y € X. Leta € [0,1], then from the convexity of X, we have
ax + &y € X. Further from the convexity of Epi(f), we have (ax + ay,af(x) +af(y)) € Epi(f).
Thatis, af (x) +&f(y) > f(ax + ay).

2 = 3: Recall that ax + &y = x + a(y — x). From statement 2, we have f(y) — f(x) > w
Taking @ — 0, we observe that the right hand side is equal to (V f(x),y — x).

3 = 4: From (T) and statement 3, it follows that for any x,y € X f(y) — f(x) — (Vf(x),y —x) = L (y -
)TVEF()(y = x) +o(lly = x[2) > 0.

4 = 1: Leta € [0,1]. Then, it suffices to show that af(x1) + &f(x2) > f(ax; + &xz). From the Taylor
expansion of f in the neighborhood of x;, we get

a(f(x1) = f(x2)) = & (VF(x2), %1 — %) + 5 { (11 = ), V2 (32) (31 = x2) ) + 0|1 — 22[3).

Similarly, we write the Taylor expansion of f in the neighborhood of x;, to get

flax +8%,) = f(x2) = (Vf(x2), %1 = x2) + ; (61 = x2), V2 (x2) (31 = %2) ) + 0([lx1 = % 13):

Taking the difference, we get a(f(x1) — f(x2)) = f(ax; + &x2) — f(x2).

Example 2.9 (Convex Function). Following functions f : RN — R are convex.
1. Linear Function: f(x) = (w,x) for each w € RN.
2. Quadratic Function: f(x) = xT Ax for a positive semi definite matrix A € RN*N,
3. Abs Maximum: f(x) = max{|x;|:i € [N]} = ||x]| -

Lemma 2.10 (Composition of functions). We define a composition function f = ho g for functions h: R — R
and ¢ : RN — R, by defining f(x) = h(g(x)) for all x € RN. Then, the following statements are true.



1. If h is convex and nondecreasing and g is convex, then f is convex.

2. If h is convex and nonincreasing and g is concave, then f is convex.
3. If his concave and nondecreasing and g is concave, then f is concave.
4. If h is concave and nonincreasing and g is convex, then f is concave.

Proof. We will use the property that a function f is convex iff dom(f) is convex and f(ax + ay) <
af(x) +af(y) for all « € [0,1]. Recall that RN is convex for all N > 1. We will only show the first
statement, and rest follow the same steps. Let x,iy € RN and a € [0,1]. From the convexity of g, we get
g(ax 4+ ay) < ag(x) + &g(y). From the nondecreasing property of 1, we get h(g(ax + ay)) < h(ag(x) +
ag(y)). From the convexity of i, we get h(ag(x) + ag(y)) < ah(g(x)) + ah(g(y))- O

Theorem 2.11 (Jensen’s Inequality). Let X : Q — X C RN be a random vector with finite marginal means, and
f:X — R be a convex function. Then the mean E[X] € X, the mean E[f (X)] is fnite, and f(E[X]) < E[f(X)].

Proof. We will show this for simple random vector X : QO — {x1,..., x5} C X, such that a; £ P{X = x;}
for all i € [m]. Then, the mean EX = )" ; w;x; € X from the convexity of X, and Ef (X) = ¥/" ; a; f(x;) is

finite. Further, from the convexity of f, we get f (Zlm:l ocl-xl) < Zim:l i f(x;). O
Corollary 2.12 (Young's inequality). Let p,q > 1 be a conjugate pair such that % + % =1. Then, ab < % + %

Proof. Take arandom variable X : ) — {a”, b} with probability mass function Px(a?) = % and Px (b7) =
1

g Then, from the concavity of log

In (151” + 1bq> =InEX>ElhX= llnap + 111117‘7 = Inab.
p q p q
Since In(-) is an increasing function, the above inequality implies the result. O

2.2 Constrained Optimization

Problem 1 (Primal problem). Consider a cost function f : RN — R and a constraint function g : RN —
R™. The primal problem is p* £ inf{f(x) : x € X}, where the constraint set is

X2, {x e RN gi(x) <0} @)

Definition 2.13 (Lagrangian). For the Problem we define an associated Lagrangian function £ : RN x
R — R for Lagrange or dual variables « € R”' and primal variables x € R, as

L(x,) = f(x) + (o, 8(x)) - ®)

Definition 2.14 (Dual function). The dual function F : R"} — R associated with the Problemis defined
for dual variables a € R'! as

F(a) éinf{z(x,a):xe]RN}. )
Theorem 2.15. The following are true for the dual function F : R"} — R defined in @) for the Problem T}
1. Fis concave in o € R'.
2. F(a) < L(x,a) forall w € R" and x € RN,
3. F(a) < p* forall x € R.
Proof. Recall that £(x) = f(x) + («,g(x)) is a linear function of « € R, and F(a) = inf, £(x,«).

1. Let B € [0,1] and &y, € R and x € X. It follows from the linearity of Lagrangian in « that
F(Bay + Paz) = int [ﬁL(x,ocl) n Bz(x,az)] > Binf£(x,a1) + BinfL (x,a0) = BF(ar) + BF ().

2. From the definition of F, it follows that F(a) < £(x,a) for all x € RN,



3. Recall that g;(x) < 0 for all x € X, and hence («,g(x)) <0 for all x € X. Therefore, F(a) < f(x) for
all x € X, and hence the result follows.

O

Problem 2. Dual problem The dual problem associated with primal problem defined in Problem T]is
d* £ max{F(a):a € RY}.

Remark 3. From the properties of dual function F : R”} — R in Theorem[2.15, we obtain that F is concave
ina € R. Since R is a convex set, it follows that the dual problem is convex. We further observe that
the optimal value of dual problem d* < p*. The difference of optimal values (p* — d*) is called the
duality gap. For a primal problem, the strong duality holds if the duality gap is zero, or d* = p*.

2.3 Convex constrained optimization
Definition 2.16 (Saddle point). For a Lagrangian £ : RN x R” — R, a saddle point (x*,a*) sastifies

sup £(x*,a) < L(x*,a") < inf L(x,a").
a€RM xRN

Theorem 2.17 (Sufficient condition). For the primal problem defined in Probleml[l} if (x*,a*) is a saddle point
of the associated Lagrangian L, then x* € X and p* = f(x*) = F(a™).

Proof. Let (x*,a*) be the saddle point of the Lagrangian £ associated with the Problem [1} From the
definition of dual function F, we get that £ (x*,a*) < F(a*) < L(x*,a*). It follows that F(a*) = £(x*,a*).

Recall that £(x*,a) = f(x*) + («,g(x*)). We assume that there exists an i € [m] such that g;(x) >
0, then we can take a; large enough so that £(x*,a) > £(x*,a*). This contradicts the saddle point
condition, and hence x* € X. Therefore («,g(x*)) <0 for all « € R”!. This implies that (a*,g(x*)) =0
and hence p* = f(x*) = F(a*). O

Definition 2.18 (Strong constraint qualification). The strong constraint qualification or Slater’s condi-
tion is defined as the existence of a point x € X? such that g;(x) < 0 for all i € [m].

Theorem 2.19 (Strong necessary condition). Let the cost function f and constraints g; for i € [m] be convex
functions, such that the Slater’s condition holds, and x* be the solution of the Problem . Then, there exists
o € R such that (x*,a*) is a saddle point of the associated Lagrangian L.

Definition 2.20 (Weak constraint qualification). The weak constraint qualification or weak Slater’s
condition is defined as the existence of a point x € X° such that for each i € [m] either g;(x) <0 or
gi(x) =0and g; affine.

Theorem 2.21 (Weak necessary condition). Let the cost function f and constraints g; for i € [m] be convex
differentiable functions, such that the weak Slater’s condition holds, and x* be the solution of the Problem [1].
Then, there exists «* € R'} such that (x*,a*) is a saddle point of the associated Lagrangian L.

Remark 4. The strong duality holds when the primal problem is convex with qualifying constraints.

Theorem 2.22 (Karush-Kuhn-Tucker (KKT)). Let the cost function f and constraint functions g; for all
i € [m] be convex and differentiable functions, such that the constraints are qualified. Then x* € RN is a solution
of the constrained problem iff there exists a* € R"} such that

Vi L(x*,a") = Vi f(x") + (a*, Vyg(x*)) =0, Vol (x*,a") =g(x*) <0, (a*,g(x*)) =0.

Proof. From the necessary condition theorem, it follows that if x* is a solution to the primal problem,
then there exists dual variables a* such that (x*,a*) is a saddle point of the Lagrangian, and all three
conditions are satisfied.

Conversely, if all three conditions are met, then for any x € RN such that g;(x) < 0 for all i € [m], we
have

m

f) = f(x) = (Vaf(x7), 0 = x7) = = ;w? (Vagi(x"),x —x%) > = (a%,g(x) — g(x7)) = — (", g(x)) = 0.

The first inequality follows from the convexity of f. The subsequent equality follows from the first
condition. Next inequality follows from the convexity of g; for all i € [m]. Next equality follows from
the third condition, and the last inequality from the fact that x € X. O
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