
Lecture-04: SVMs — non-separable case

1 SVMs — non-separable case

In most practical settings, the given sample z ∈ (X× Y)m is not linearly separable. For X ⊆ RN and
Y ⊆ R, it would not be possible to draw a hyperplane in RN that perfectly separates the two sets of
points. More precisely, for any canonical hyperplane ⟨w,x⟩+ b = 0, there exists i ∈ [m] such that

yi(⟨w,xi⟩+ b) < 1.

To minimize the number of such points we can try to find a hyperplane that minimizes the empirical
error,

minw,b

m

∑
i=1

1{yi(⟨w,xi⟩+b)<1}.

This optimization problem is NP-hard in the dimension of the space and cannot be solved efficiently.
Moreover we would like to work with a smooth function to optimize. The constraints imposed in the
linearly separable case discussed in the linearly spearable case cannot all hold simultaneously. How-
ever, a relaxed version of these constraints can indeed hold, where for each example i ∈ [m], there exists
a slack variable ξi ⩾ 0 such that

yi(⟨w,xi⟩+ b)⩾ 1 − ξi.

A slack variable ξi measures the distance by which feature vector xi violates the desired inequality,
yi(⟨w,xi⟩+ b)⩾ 1.

Definition 1.1 (Outliers). For a hyperplane ⟨w,x⟩+ b = 0, a feature vector xi with slack variable ξi > 0
is an outlier. The set of outliers O is defined as

O ≜ {i ∈ [m] : 1 − ξi ⩽ yi(⟨w,xi⟩+ b) < 1} = {i ∈ [m] : ξi > 0} .

Remark 1. Each example xi must be positioned on the correct side of the appropriate marginal hyper-
plane to not be considered an outlier. As a consequence, a feature vector xi with 0 < yi(⟨w,xi⟩+ b) < 1
is correctly classified by the hyperplane ⟨w,x⟩ + b = 0 but is nonetheless considered to be an outlier,
that is, ξi > 0.

Remark 2. If we omit the outliers, the training data is correctly separated by ⟨w,x⟩+ b = 0 with a margin
ρ = 1

∥w∥ that we refer to as the soft margin, as opposed to the hard margin in the separable case.

Remark 3. How should we select the hyperplane in the non-separable case? One idea consists of select-
ing the hyperplane that minimizes the empirical error. We have already rejected that idea due to the
complexity considerations. We have conflicting objectives here. On the one hand, we need to minimize
the total slack due to the outliers, measured by ∥ξ∥p

p = ∑m
i=1 ξ

p
i , for some p ⩾ 1. On the other hand, we

wish to maximize the margin for non-outliers. Larger margin can lead to more outliers and hence larger
slack. Hence, these two are conflicting objectives.

1.1 Primal optimization problem

We define a primal problem by deciding on a trade-off between these two objectives for the non-
seperable case, where C ⩾ 0 is the trade-off parameter between margin-maximization and the slack
penalty. The parameter C is determined by n-fold cross validation for a given dataset. For ξ ∈ Rm

+, the
primal problem is

min
w,b,ξ

1
2
∥w∥2

2 + C∥ξ∥p
p

subject to yi(⟨w,xi⟩+ b)⩾ 1 − ξi and ξi ⩾ 0, for all i ∈ [m].
(1)
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As in the separable case, the objective function is convex and the constraints are affine. Therefore,
the primal problem in (1) is a convex optimization problem. In particular, ξ 7→ ∑m

i=1 ξ
p
i = ∥ξ∥p

p is convex
in view of the convexity of the norm ∥·∥p. There are many possible choices for p leading to more or less
aggressive penalizations of the slack terms. The choices p = 1 and p = 2 lead to the most straightforward
solutions and analyses.

Definition 1.2 (Hinge loss). The loss functions associated with p = 1 and p = 2 are called the hinge
loss and the quadratic hinge loss, respectively.

Remark 4. Both hinge losses are convex upper bounds on the zero-one loss, thus making them well
suited for optimization. We first observe that for all p ⩾ 1.

1{x<0} ⩽ (1 − (x ∧ 1))p.

Recall that a labeled point (x,y) is incorrectly labeled if y(⟨w,x⟩ + b) < 0. From the definition of the
slack variable ξ, we have 1 − ξ ⩽ y(⟨w,x⟩+ b) < 1. Therefore, we observe that

1{y(⟨w,x⟩+b)<0} ⩽ (1 − (y(⟨w,x⟩+ b) ∧ 1))p ⩽ (1 − (1 − ξ) ∧ 1)p = ξ p.

In what follows, the analysis is presented in the case of the hinge loss (p = 1), which is the most
widely used loss function for SVMs.

1.2 Support vectors

In this section, we will show that the normal vector w to the resulting hyperplane is a linear combination
of some feature vectors, referred to as support vectors. Consider the dual variable α, β ∈ Rm

+ associated to
the m affine relaxed separation constraints and m non negativity constraint on slack variables. Then, we
can write the Lagrangian for all canonical pairs (w,b) ∈ RN+1 and Lagrange dual variables α, β ∈ Rm

+
as

L(w,b,ξ,α, β) =
1
2
∥w∥2

2 + C∥ξ∥1 −
m

∑
i=1

αi(yi(⟨w,xi⟩+ b)− 1 + ξi)−
m

∑
i=1

βiξi. (2)

Similar to the separable case, the constraints in the primal problem in (1) are affine and thus qualified. In
addition, the objective function as well as the affine constraints are convex and differentiable. It follows
that Ew∗ ,b∗ is the optimal separating cannonical hyperplane if and only if there exists α∗, β∗ ∈ Rm

+ that
satisfies the following three KKT conditions. The first KKT condition is obtained by taking the gradient
of Lagrangian with respect to primal variables and equating it to zero, to get

∇wL|w=w∗ = w∗ −
m

∑
i=1

αiyixi = 0, ∇bL|b=b∗ = −
m

∑
i=1

α∗i yi = 0, ∇ξL|ξ=ξ∗ = C − α − β = 0.

The next KKT condition is obtained by setting the derivative with respect to dual variables, being less
than or equal to zero. This is equivalent to constraints being satisfied, i.e. for all i ∈ [m]

∇αL= −yi(⟨w∗,xi⟩+ b∗) + 1 − ξ∗i ⩽ 0, ∇βL= −ξ∗ ⩽ 0.

The final KKT conditions looks at the complementary condition, which results in ∑m
i=1 α∗i (yi(⟨w∗,xi⟩+

b∗)− 1 + ξ∗i ) = 0 and ∑m
i=1 β∗

i ξ∗i = 0. Since α, β ∈ Rm
+, together with second condition of KKT, it follows

that the each term of the two summation is positive. Therefore, it means that for all i ∈ [m]

α∗i [yi(⟨w∗,xi⟩+ b∗)− 1 + ξ∗i ] = 0, β∗
i ξ∗i = 0.

Remark 5. The complementary condition implies that α∗i = 0 if yi(⟨w∗,xi⟩+ b∗) ̸= 1 − ξ∗i .

Definition 1.3 (Support vectors). An example of feature vector is a support vector if the corresponding
relaxed constraint Lagrange variable α∗i ̸= 0, i.e. S≜

{
i ∈ [m] : α∗i ̸= 0

}
⊆
{

i ∈ [m] : yi(⟨w∗,xi⟩+ b∗) = 1 − ξ∗i
}

.

Remark 6. If for some feature vector xi ∈ S and the corresponding slack variable ξ∗i = 0, then yi(⟨w∗,xi⟩+
b∗) = 1 and the example xi lies on a marginal hyperplane, as in the separable case. Otherwise, ξ∗i ̸= 0
and xi is an outlier. In this case, the complementary KKT condition implies that β∗

i = 0 and hence
α∗i = C. Thus, support vectors xi are either outliers, in which case α∗i = C, or they lie on the marginal
hyperplanes. That is, we can write the support vector as a union of disjoint sets

S = {i ∈ S : ξ∗i = 0} ∪ {i ∈ S : ξ∗i > 0} = {i ∈ S : yi(⟨w∗,xi⟩+ b∗) = 1} ∪ {i ∈ S : α∗i = C} .

Remark 7. As in the separable case, note that while the weight vector w∗ solution is unique, the support
vectors are not.
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1.3 Dual optimization problem

In this section, we will show that the hypothesis h ∈ H and distance b can be expressed as inner prod-
ucts. To this end, we look at the the dual form of the constrained primal optimization problem (1).
Recall that the dual function F(α) = infw,bL(w,b,α). The Lagrangian L is minimized at the optimal
primal variables (w∗,b∗) such that

∇wL(w∗,b∗,ξ∗) =∇bL(w
∗,b∗,ξ∗) =∇ξL(w∗,b∗,ξ∗) = 0.

Using this condition, we can write the optimal normal vector w∗ = ∑m
i=1 αiyixi in terms of the dual

variables α ∈ Rm
+, together with the constraints ∑m

i=1 αiyi = 0 and C = αi + βi for all i ∈ [m].

Definition 1.4 (Gram matrix). For a labeled sample z ∈ (X× Y)m, we can define a Gram matrix A ∈
Rm×m defined by the (i, j)th entries Aij ≜

〈
yixi,yjxj

〉
for all i, j ∈ [m].

Remark 8. The matrix A is the Gram matrix associated with vectors (y1x1, . . . ,ymxm) and hence is posi-
tive semidefinite.

Substituting w∗ = ∑m
i=1 αiyixi, the constraints ∑m

i=1 αiyi = 0 and C = α + β, and the definition of
Gram matrix A, in the Lagrangian L(w∗,b∗,α), we can write the dual function as F(α) = L(w∗,b∗,α) =
∑m

i=1 αi − 1
2 ∑m

i=1 ∑m
j=1 αi Aijαj. The constraints are αi ⩾ 0 together with βi ⩾ 0 to get αi ⩽C, and ∑m

i=1 αiyi =

0. Therefore, we can write the dual SVM optimization problem as

max
α

∥α∥1 −
1
2

αT Aα (3)

subject to: C ⩾ αi ⩾ 0, for all i ∈ [m], and
m

∑
i=1

αiyi = 0.

The objective function G : α 7→ ∥α∥1 − 1
2 αT Aα is infinitely differentiable, and its Hessian is given by

∇2G = −A ⪯ 0, and hence G is a concave function. Since the constraints are affine and convex, the
dual maximization problem (3) is equivalent to a convex optimization problem. Since G is a quadratic
function of Lagrange variables α, this dual optimization problem is also a quadratic program, as in the
case of the primal optimization. Since the constraints are affine, they are qualified and strong duality
holds. Thus, the primal and dual problems are equivalent, i.e., the solution α∗ of the dual problem (3)
can be used directly to determine the hypothesis returned by SVMs. The solution α∗ of the dual problem
can be used to return the SVM hypothesis

h(x) = sign(⟨w∗,x⟩+ b∗) = sign

(
m

∑
j=1

α∗j yj
〈
xj,x

〉
+ b∗

)
.

Recall that for all xi ∈ S ∩ {ξi = 0}, we have ⟨w∗,xi⟩+ b∗ = 1. Hence, the constant b∗ is given by

b∗ = yi −
m

∑
j=1

α∗j yj
〈
xj,xi

〉
, for any xi such that 0 < α∗i < C.
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