Lecture-06: Reproducing Kernel Hilbert Space (RKHYS)

1 Reproducing Kernel Hilbert Space (RKHS)

Lemma 1.1 (Cauchy-Schwarz inequality for PDS kernel). Let K be a PDS kernel. Then
K?(x,x") < K(x,x)K(x,x") for all x,x" € X.
Proof. We can write the following Gram matrix for samples x,x” and PDS kernel K as

K(x,x) K(x,x")

K= K(x',x) K(x/,x")|"

Since K is a PDS Kernel, the Gram matrix K is symmetric and positive semi-definite. In particular,
K(x,x") = K(¥,x) and the det(K) > 0. Hence, the result follows. O

Definition 1.2. For any PDS kernel K: X x X — R, we can define a kernel evaluation map @, : X — R
ata point x € X by ®,(y) £ K(x,y) forall y € X.

Definition 1.3. We can define a pre-Hilbert space IHj as the span of kernel evaluations at finitely many
elements of X. That is,

Hy = {ZaiCDX, : I finite ,a € Rl x € DCI} CR™.
i€l

The completion of Hj is a complete Hilbert space denoted by H.

Theorem 1.4 (RKHS). Let K: X x X — R bea PDS kernel. Then, there exists a Hilbert space H and a mapping
@ : X — H such that for all x,x" € X,

K(x,x") = (®(x), P(x") )gy-
Furthermore, H has the following reproducing property, forallh € Hand x € X,
h(x) = ((h(-),K(x,))g -
The Hilbert space H is called the RKHS associated with the kernel K.
Remark 1. We make the following observations from the Theorem statement.
1. The Hilbert space H C RX.
2. For any x € X, we have K(x,-) € H.
Proof. For any x € X, define @, : X — R such that ®,(x’) = K(x,x’). Then, we define a map (-,-) :
Ho x Ho — R such that fo f =} ;c;a;®Px; and g =} ;c; bj®Py;, we have
(f,&)m, = Y ) aibjK(xi,xj) = ) bif(x)) = ) aig(x;).
iclje] j€] iel
We can verify that the (-,-) : Hy x Hp — R has the follow properties.
1. Symmetry: By definition, (-, -) is symmetric.
2. Bilinearity: (-, -) is bilinear. Can you show that («f + ph,g) =a (f,g) + B(f,)?

3. Positive semi-definiteness: For any f € IHo, we have f = } ;- a,®,, and since the Gram matrix K
is symmetric and positive semidefinite for kernel K and samples S = (x; : i € I), we have

(f.f) =YY auK(x;,xj) = a’Ka > 0.

ieljel



4. Reproducing property: Let f € Hg and f =} ;c;a;Py,. Then,
(fr@x) =} aiK(x;,x) =} ai®y (x) = ().

iel iel

5. Definiteness: We will show that for any f € Hj and x € X, we have bounded f(x). From the

reproducing property, it suffices to show that (f,®,)* < (f, f) (®x,®;) for any x € X. Can you
show that (-,-) is a PDS kernel? Then the result will follow from Lemma ??.

From properties 1,2,3,5, it follows that Hy is a pre-Hilbert space which can be made complete to form
the Hilbert space H = IH, where IH is dense in H. This Hilbert space H is the RKHS associated with
the kernel K. O

1.1 Representer theorem

Observe that modulo the offset b, the hypothesis solution of SVMs can be written as a linear combina-
tion of the functions K(x;,-), where x; is a sample point. The following theorem known as the repre-
senter theorem shows that this is in fact a general property that holds for a broad class of optimization
problems, including that of SVMs with no offset.

Theorem 1.5 (Representer theorem). Let K: X x X — R be a PDS kernel and H its corresponding RKHS.
Then for any non decreasing function G : R — R and any loss function L : R™ — R U {400}, the optimization
problem
inF(h) = inG(||h L(h(xy),...,h ,
argmin F (1) = argmin G(||]ly) + L(h(x1),.-.. 1(xm))

has a solution of the form h* = Y_I" ; a;K(x;,-). If G is strictly increasing, then any solution has this form.

Proof. Let Hy = span(K(x;,-) : i € [m]). We can write the RKHS H as the direct sum of span of H;
and the orthogonal space H{, i.e. H =H; @ H;. Hence, any hypothesis & € H, can be written as
h = hy + hi-. Since G is non-decreasing

Gl ) < G(\/Ilhll\ﬁq + | I1z) = GAlIhlg)-

By the reproducing property, we have for all i € [m]
h(xi) = (h,K(xi,-)) = (1, K(xi,-)) = b1 (x7).

Therefore, L(h(x1),...,h(xm)) = L(h1(x1),...,h1(xm)), and hence F(hy) < F(h). If G is strictly increas-
ing, then F(h;) < F(h) when ||hi"||;; > 0 and any solution of the optimization problem must be in
H;. 0

2 Empirical Kernel Map

Advantages of working with kernel is that no explicit definition of a feature map ® is needed. Following
are the advantages of working with explicit feature map ®.

(i) For primal method in various optimization problems.

(if) To derive an approximation based on .
(iif) Theoretical analysis where & is more convenient.

Definition 2.1 (Empirical kernel map). Given an unlabeled training sample x € X" and a PDS kernel
K, the associated empirical kernel map ® : X — IR” is a feature mapping defined for all y € X by

K(y,x1)
W=
K(y,xm)

Remark 2. The empirical kernel map evaluated at a point y € X is the vector of K-similarity measure of
y with each of the m training points.

Remark 3. For any i € [m], we have ®(x;) = Ke;, where ¢; is the i-th unit vector. Hence, (Ke;, Ke;) =
(ei, Kzej> . That is, the kernel matrix associated with the empirical kernel map @ is K.



Definition 2.2. Let K* denote the pseudo-inverse of the gram matrix K and let (K*)% denote the SPSD
matrix whose square is K. We define a feature map ¥ : X — R using the empirical kernel map & and

the matrix (K*)% as
¥(y) = (K')2d(y), forally € X.

Remark 4. Using the identity KKK = K, we see that
1 1
(), ¥ (x) = (KN 0(x), (K10 (x)) ) = (Key, K'Key ) = (e, Kej).

Thus, the kernel matrix associated to map ¥ is K.

Remark 5. For the feature mapping Q : X — R™ defined by Q(x) = K'®(x) for all x € X, we check that
the
<Q(X1‘),Q(x]‘)> = <K+CD(JC,'),K+(D(XJ‘)> = <K61',K+€]‘> = <€i,KK+€]’> .

Thus, the kernel matrix associated to map Q is KK'.

3 Kernel-based algorithms

We can generalize SVMs in the input space X to the SVMs in the feature space H mapped by the feature
mapping ®. Recall that K(y,z) = (P(y), P(z))yy for all y,z € X, and hence the gram matrix K generated
by the kernel map K and the unlabeled training sample x € X" suffices to describe the SVM solution
completely.

Definition 3.1 (Hadamard product). We define Hadamard product of two vectors x,y € R™ as x oy €
R™ such that (x oy); = x;y; for all i € [m].

Remark 6. We can write the dual problem for non-separable training data in this high dimensional space
H as

max1Ta — %(a oy)TK(xoy)
4
subject to: 0 <a < Cand thy =0.

The solution hypothesis & can be written as h(x) = sign (/" ; a;y;K(x;,x) +b), where b = y; — (x o
y)TKel- for all x; such that 0 < a; < C.



