
Lecture-06: Reproducing Kernel Hilbert Space (RKHS)

1 Reproducing Kernel Hilbert Space (RKHS)

Lemma 1.1 (Cauchy-Schwarz inequality for PDS kernel). Let K be a PDS kernel. Then

K2(x, x′)⩽ K(x, x)K(x′, x′) for all x, x′ ∈ X.

Proof. We can write the following Gram matrix for samples x, x′ and PDS kernel K as

K =

[
K(x, x) K(x, x′)
K(x′, x) K(x′, x′)

]
.

Since K is a PDS Kernel, the Gram matrix K is symmetric and positive semi-definite. In particular,
K(x, x′) = K(x′, x) and the det(K)⩾ 0. Hence, the result follows.

Definition 1.2. For any PDS kernel K : X×X→ R, we can define a kernel evaluation map Φx : X→ R

at a point x ∈ X by Φx(y)≜ K(x,y) for all y ∈ X.

Definition 1.3. We can define a pre-Hilbert space H0 as the span of kernel evaluations at finitely many
elements of X. That is,

H0 ≜

{
∑
i∈I

aiΦxi : I finite , a ∈ RI , x ∈ XI

}
⊆ RX.

The completion of H0 is a complete Hilbert space denoted by H.

Theorem 1.4 (RKHS). Let K : X×X→ R be a PDS kernel. Then, there exists a Hilbert space H and a mapping
Φ : X→ H such that for all x, x′ ∈ X,

K(x, x′) =
〈
Φ(x),Φ(x′)

〉
H

.

Furthermore, H has the following reproducing property, for all h ∈ H and x ∈ X,

h(x) = ⟨(h(·),K(x, ·)⟩H .

The Hilbert space H is called the RKHS associated with the kernel K.

Remark 1. We make the following observations from the Theorem statement.

1. The Hilbert space H ⊆ RX.

2. For any x ∈ X, we have K(x, ·) ∈ H.

Proof. For any x ∈ X, define Φx : X → R such that Φx(x′) = K(x, x′). Then, we define a map ⟨·, ·⟩ :
H0 × H0 → R such that fo f = ∑i∈I aiΦxi and g = ∑j∈J bjΦxj , we have

⟨ f , g⟩H0
≜ ∑

i∈I
∑
j∈J

aibjK(xi, xj) = ∑
j∈J

bj f (xj) = ∑
i∈I

aig(xi).

We can verify that the ⟨·, ·⟩ : H0 × H0 → R has the follow properties.

1. Symmetry: By definition, ⟨·, ·⟩ is symmetric.

2. Bilinearity: ⟨·, ·⟩ is bilinear. Can you show that ⟨α f + βh, g⟩ = α ⟨ f , g⟩+ β ⟨ f , g⟩?

3. Positive semi-definiteness: For any f ∈ H0, we have f = ∑i∈I aiΦxi and since the Gram matrix K
is symmetric and positive semidefinite for kernel K and samples S = (xi : i ∈ I), we have

⟨ f , f ⟩ = ∑
i∈I

∑
j∈I

aiajK(xi, xj) = aTKa ⩾ 0.
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4. Reproducing property: Let f ∈ H0 and f = ∑i∈I aiΦxi . Then,

⟨ f ,Φx⟩ = ∑
i∈I

aiK(xi, x) = ∑
i∈I

aiΦxi (x) = f (x).

5. Definiteness: We will show that for any f ∈ H0 and x ∈ X, we have bounded f (x). From the
reproducing property, it suffices to show that ⟨ f ,Φx⟩2 ⩽ ⟨ f , f ⟩ ⟨Φx,Φx⟩ for any x ∈ X. Can you
show that ⟨·, ·⟩ is a PDS kernel? Then the result will follow from Lemma ??.

From properties 1,2,3,5, it follows that H0 is a pre-Hilbert space which can be made complete to form
the Hilbert space H = H0, where H0 is dense in H. This Hilbert space H is the RKHS associated with
the kernel K.

1.1 Representer theorem

Observe that modulo the offset b, the hypothesis solution of SVMs can be written as a linear combina-
tion of the functions K(xi, ·), where xi is a sample point. The following theorem known as the repre-
senter theorem shows that this is in fact a general property that holds for a broad class of optimization
problems, including that of SVMs with no offset.

Theorem 1.5 (Representer theorem). Let K : X× X→ R be a PDS kernel and H its corresponding RKHS.
Then for any non decreasing function G : R → R and any loss function L : Rm → R ∪ {+∞} , the optimization
problem

argmin
h∈H

F(h) = argmin
h∈H

G(∥h∥H) + L(h(x1), . . . , h(xm)),

has a solution of the form h∗ = ∑m
i=1 αiK(xi, ·). If G is strictly increasing, then any solution has this form.

Proof. Let H1 = span(K(xi, ·) : i ∈ [m]). We can write the RKHS H as the direct sum of span of H1
and the orthogonal space H⊥

1 , i.e. H = H1 ⊕ H⊥
1 . Hence, any hypothesis h ∈ H, can be written as

h = h1 + h⊥1 . Since G is non-decreasing

G(∥h1∥H)⩽ G(

√
∥h1∥2

H +
∥∥h⊥1

∥∥2
H
) = G(∥h∥H).

By the reproducing property, we have for all i ∈ [m]

h(xi) = ⟨h,K(xi, ·)⟩ = ⟨h1,K(xi, ·)⟩ = h1(xi).

Therefore, L(h(x1), . . . , h(xm)) = L(h1(x1), . . . , h1(xm)), and hence F(h1) ⩽ F(h). If G is strictly increas-
ing, then F(h1) < F(h) when

∥∥h⊥1
∥∥

H
> 0 and any solution of the optimization problem must be in

H1.

2 Empirical Kernel Map

Advantages of working with kernel is that no explicit definition of a feature map Φ is needed. Following
are the advantages of working with explicit feature map Φ.

(i) For primal method in various optimization problems.
(ii) To derive an approximation based on Φ.

(iii) Theoretical analysis where Φ is more convenient.

Definition 2.1 (Empirical kernel map). Given an unlabeled training sample x ∈ Xm and a PDS kernel
K, the associated empirical kernel map Φ : X→ Rm is a feature mapping defined for all y ∈ X by

Φ(y) =

K(y, x1)
...

K(y, xm)

 .

Remark 2. The empirical kernel map evaluated at a point y ∈ X is the vector of K-similarity measure of
y with each of the m training points.

Remark 3. For any i ∈ [m], we have Φ(xi) = Kei, where ei is the i-th unit vector. Hence,
〈
Kei,Kej

〉
=〈

ei,K2ej
〉

. That is, the kernel matrix associated with the empirical kernel map Φ is K2.
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Definition 2.2. Let K† denote the pseudo-inverse of the gram matrix K and let (K†)
1
2 denote the SPSD

matrix whose square is K†. We define a feature map Ψ : X→ Rm using the empirical kernel map Φ and
the matrix (K†)

1
2 as

Ψ(y) = (K†)
1
2 Φ(y), for all y ∈ X.

Remark 4. Using the identity KK†K = K, we see that〈
Ψ(xi),Ψ(xj)

〉
=

〈
(K†)

1
2 Φ(xi), (K†)

1
2 Φ(xj)

〉
=

〈
Kei,K†Kej

〉
=

〈
ei,Kej

〉
.

Thus, the kernel matrix associated to map Ψ is K.

Remark 5. For the feature mapping Ω : X→ Rm defined by Ω(x) = K†Φ(x) for all x ∈ X, we check that
the 〈

Ω(xi),Ω(xj)
〉
=

〈
K†Φ(xi),K†Φ(xj)

〉
=

〈
Kei,K†ej

〉
=

〈
ei,KK†ej

〉
.

Thus, the kernel matrix associated to map Ω is KK†.

3 Kernel-based algorithms

We can generalize SVMs in the input space X to the SVMs in the feature space H mapped by the feature
mapping Φ. Recall that K(y,z) = ⟨Φ(y),Φ(z)⟩H for all y,z ∈ X, and hence the gram matrix K generated
by the kernel map K and the unlabeled training sample x ∈ Xm suffices to describe the SVM solution
completely.

Definition 3.1 (Hadamard product). We define Hadamard product of two vectors x,y ∈ Rm as x ◦ y ∈
Rm such that (x ◦ y)i = xiyi for all i ∈ [m].

Remark 6. We can write the dual problem for non-separable training data in this high dimensional space
H as

max
α

1Tα − 1
2
(α ◦ y)TK(α ◦ y)

subject to: 0 ⩽ α ⩽ C and αTy = 0.

The solution hypothesis h can be written as h(x) = sign (∑m
i=1 αiyiK(xi, x) + b) , where b = yi − (α ◦

y)TKei for all xi such that 0 < αi < C.
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