Lecture-07: PAC Learning

1 PAC learning model

Definition 1.1 (PAC-learning). A concept class C C YX is said to be PAC-learnable if there exists an al-
gorithm A and a polynomial function poly(, -, -,-) such that for any € > 0 and ¢ > 0, for all distributions
D on input space X and for any target concept ¢ € C, the following holds for any sample z € (X x Y)™
of size m > poly(1,1,n,size(c)):

P{R(h;)<e}>1-0.

If A further runs in poly(L, %,n,size(c)), then C is said to be efficiently PAC-learnable. When such an

algorithm A exists, it is called a PAC-learning algorithm for C.

Remark 1. The cost of computational representation of an input vector x € X is of order n, and of a
concept ¢ is of order size(c).

Remark 2. A concept class C is thus PAC-learnable if the hypothesis returned by the algorithm after ob-
serving a number of points polynomial in 1 and 1 is approximately correct (error at most €) with high
probability (at least 1 — J), which justifies the PAC terminology. The 6 > 0 is used to define the confi-
dence 1 — J and € > 0 the accuracy 1 — €. Note that if the running time of the algorithm is polynomial in
% and %, then the sample size m must also be polynomial if the full sample is received by the algorithm.

Remark 3. The following statements are true for the PAC framework.
1. Itis a distribution-free model.
2. The training sample and the test examples are drawn from the same distribution D.
3. It deals with the question of learnability for a concept class C and not a particular concept.

2 Guarantees for finite hypothesis sets — consistent case

Theorem 2.1 (Learning bounds — finite H, consistent case). Let H C Y™ be a finite set of functions. Let A
be an algorithm that for any target concept ¢ € H and i.i.d. sample z € (X x Y)™ returns a consistent hypothesis
h, € H such that R(h;) = 0. Then, for any €,6 > 0, the inequality P{R(h;) < e} > 1 — ¢ holds if

m>1<ln|H|+ln1>.
€ )

This sample complexity result admits the following equivalent statement as a generalization bound, for any €,6 >
0, with probability at least 1 — ¢
1 1
R(h;) < p” (1n|H +ln5> .
Proof. Fix € > 0. We provide a uniform convergence bound for all consistent hypotheses h, € H, since
we don’t know which of these is selected by the algorithm A. For a given hypothesis & and any unla-

beled training sample X € X" drawn i.i.d. from the same distribution D, the probability of getting zero
empirical risk is

P{R(l) =0} = P(A {h(X;) = Vi) =ﬁp{h<xi> —Yi} = (1 R()".

Consider any h € H such that R(h) = El,(x)y} > €, then the probability for any sample z € (X x )™
drawn i.i.d. from the same distribution D with zero empirical risk is

P(Upen {R(h)=0}) < Y_ P{R(h)=0}.
heH



We can upper bound the probability of a hypothesis being consistent in terms of its generalization risk.
Consider any / € H such that R(h) =E1,(x) 2y} > €, then P{R(h;) =0} < (1 —€)™. The result follows
from substituting this bound in the union bound. O

3 Guarantees for finite hypothesis sets — inconsistent case

In many practical cases, the hypothesis set H may not consist of the target concept ¢ € C.

Corollary 3.1 (Hoeffding). Fix € > 0 and let z € (X x {0,1})™ be an i.i.d. sample of size m. Then, for any
hypothesis h : X — {0,1}

P{R(h) — > e} <exp( 2m€2), P{R(h) — R(h) < —€} < exp(—2me?).
By the union bound, we have P {|R(h) — R(h)| > €} < 2exp(—2me?).
Proof. Recall that R(h) = Ly 1 (Yi#h(x,)) and R(h) = ER(/). We get the results by taking the random
variables 1y . (x,)y € {0,1}, and applying Theorem ?? with o2 =m. O

Corollary 3.2 (Generalization bound — single hypothesis). Fora hypothesis h: X — {0,1} and any 6 >0,
the following inequality holds with probability at least 1 — 6

. In2
< —
R(h) < R() + 1/ -2
Theorem 3.3 (Learning bound — finite H, inconsistent case). Let H be a finite hypothesis set. Then, for
any 6 > 0, with probability at least 1 — 9,

. In|H|+1n2
R(h) < R(h) + %,for allh € H.

Proof. Let hy, ..., hy| be the elements of H. Using the union bound and applying the generalization
bound, we get

P(Uper {R(h) —R(h) > €}) < Y P{R(h) — R(h) > €} < 2|H|exp(—2me?).
heH

Setting the right-hand side to be equal to 6 completes the proof. O

Remark 4. We observe the following from the upper bound on the generalized risk.

1. For finite hypothesis set H,
. 1
MM<RW+O(VW%HU

The number of bits needed to represent H is log, |H]|.
A larger sample size m guarantees better generalization.
The bound increases logarithmically with |H |

The bound is worse for inconsistent case 4/ gz\ | compared to OgZ‘H| for the consistent case.

For a fixed |H]|, to attain the same guarantee as in the consistent case a quadratically larger labeled
sample is needed.

7. The bound suggests seeking a trade-off between reducing the empirical error versus controlling
the size of the hypothesis set: a larger hypothesis set is penalized by the second term but could
help reduce the empirical error, that is the first term. But, for a similar empirical error, it suggests
using a smaller hypothesis set.
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4 Generalities

4.1 Deterministic versus stochastic scenarios

Consider the stochastic scenario where the distribution D is defined over X x Y. The training data is a
labeled sample T = ((X;,Y;) : i € [m]) drawn i.i.d. from the distribution D. The learning problem is to
find a hypothesis h € H with small generalization error

R(h) = P{h(X) # Y} =E[Lgx)£y})-



Definition 4.1 (Agnostic PAC-learning). Let H be a hypothesis set. An algorithm A is an agnostic PAC-
learning algorithm if there exists a polynomial function poly(-,-,-,-) such that for any € > 0 and > 0,

for all distributions D over X x Y, the following holds for any sample size m > poly(L,1,n,size(c))
P{R(hs) —minR(h) < (—:} >1-6.
heH

Further, if the algorithm A runs in poly(1,1,n,size(c)), then it is said to be an efficient agnostic PAC-
learning algorithm.

4.2 Bayes error and noise
In the deterministic case, by definition, there exists a target function c : X — Y with no generalization
error R(h) = 0. In the stochastic case, there is a minimal non-zero error for any hypothesis.

Definition 4.2 (Bayes error). Given a distribution D over X x Y, the Bayes error R* is defined as the
infimum of the errors achieved by measurable functions 1 : X — Y

R*2 inf  R(h).

h measurable
A hypothesis h with R(h) = R* is called a Bayes hypothesis or Bayes classifier.
In the deterministic case, we have R* = 0, however R* # 0 in the stochastic case. Recall that
R(h) = Bl oy = [ dP() L P Lo -
xeX ye%
The Bayes classifier /ip can be defined in terms of the conditional probabilities as

hp(x) = argmag(P(y\x), forall x € X.
e

The average error made by hp on x € X is thus min {Zzey:#y P(z|x) }, and this is the minimum possible
error.

Definition 4.3 (Noise). For binary classification Y = {0,1}, given a distribution D over X x Y, the noise
at point x € X is defined by
n(x) =min{P(1|x

The average noise or the noise associated to D is E[n(X

), P(0]x)}.

))-

Remark 5. The average noise is the Bayes error, i.e. E[n(X)] = R*. The noise determines the difficulty of
the learning task.

4.3 Estimation and approximation errors

For a hypothesis set H, we let i* be the best-in-class hypothesis in the H with minimal error. Then, the
difference between the generalization risk and Bayes error can be written as

R(h) — R* = R(h) — R(h*) + R(h*) — R*.
Definition 4.4. The second term R(h*) — R* is called the approximation error, and is a measure of how
well the Bayes error can be approximated by the class H.

Approximation error is a measure of the richness of the hypothesis set H, and not available in gen-
eral.

Definition 4.5. The first term R(h) — R(h*) is called the estimation error, and measures the performance
of hypothesis i with respect to best-in-class hypothesis.

The definition of agnostic PAC-learning is also based on the estimation error. The estimation error of
the hypothesis g returned by the algorithm A after training on a sample S, can sometimes be bounded
in terms of the generalization error.

Example 4.6 (Empirical risk minimization (ERM)). Let h% denote the hypothesis h € H that minimizes
the empirical risk for the labeled sample T. In particular, Rh§ < R(h*) and we can write

R(hg) = R(*) = R(hF) — R(h}) + R(h}) — R(H*) < R(hF) — R(hE) + R(h*) = R(h*) < 2sup [R(h) — R(h)|.
heH

The upper bound can be bounded by the learning bounds and increases with the size of the hypothesis
set |H|, while the Bayes error R(/*) decreases with |H]|.



4.4 Model selection

Example 4.7 (Structural risk minimization (SRM)). Consider an infinite sequence of hypothesis sets
with increasing sizes H, C H,4 for all n > 0. For each H,, we can find the ERM solution hE and
complexity term c(H,,m). Then,

WS = i Ry(h H,,m)).
argheg}geN( r(h) + c(Hp,m))

If Ry (h) = 0 for some h € Hy, then Rr(h) = 0 for all Hy,, m > n.

Example 4.8 (Regularized risk minimization). An alternative family of algorithms is based on a more
straightforward optimization that consists of minimizing the sum of the empirical error and a regular-
ization term that penalizes more complex hypotheses. The regularization term is typically defined as

||k ||2 for some norm ||-|| when H is a vector space, and
h¥ = argminﬁT(h) +A ”hHZ’
heH

where A > 0 is a regularization parameter, which can be used to determine the trade-off between em-
pirical error minimization and control of the complexity. In practice, A is typically selected using n-fold
cross-validation.

A Hoeffding’s lemma

Lemma A.1 (Hoeffding). Let X be a zero-mean random variable with X € [a,b] for b > a. Then, for any t > 0,
we have
E[eX] < eM
Proof. From the convexity of the function f(x) = e'*, we have for any x = Aa + (1 — A)b € [a,b] for
A=10=2e0,1]
e*=f(x)<Af(a)+(1—-A)f(b) = %et” + %etb.

Since E[X] = 0, taking expectation on both sides, we get from the linearity of the expectations

E[e"] < - 3 aet” + 7b_—aa et =),

where the function ¢(t) is given by

_ b —a t(b—a)
¢(t)ta+ln<b—a+b—ae .

We can write the first two derivatives of this function ¢(t) as

, aet(bfa) a
t)=a— =q — ,
P et T e —
—abe~t(0-a) ® (1—a)etb-a) (b—a)?
"(t) = = (b—a)? < ,
(P ( ) (hh%ueft(bfu) _ ﬁ)Z ( Cl) <(1 _ tx)e_t(b‘“) 4 06) ((1 _ DC)E_t(h_a> + Dé) 4

where we have denoted a = ;=% > 0 since E[X]| = 0. The result follows from the second order expansion
of ¢(t), such that we get for some 6 € [0, 1]

2 2
0 400+ 90+ Eri < L

O

Theorem A.2 (Hoeffding). Let (X; € [a;,b;] : i € [m]) be a vector of m independent random variables, and
define o> = Y1 | (b; — a;)%. Then, for any € > 0 and Sy, = Y.I" | X, we have
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Proof. From the definition of indicator sets and for any increasing function ¢ : R — R, we can write for
any random variable X

P(X) Z ¢(X) Lixzer = P(X) Lig(x)2p(e)} = P(€)Lx2e}-

Taking the random variable S,;, — E[S] and ¢(x) = ¢!¥, and taking expectation on both sides, we get
the Chernoff bound

m
P{Sy —ES, >€e} < e_telE[exp(t(Sm —ESy))] = e_tenlE[exp(t(X,- —EX;))]
i=1
m 2.2 2
< e—teHexp(tz(bi — ai)2/8) =exp (—té‘ + té)’) <exp (—2;:2> .

i=1

The first equality follows from the i.i.d. nature of (X; : i € [m]), the following inequality follows from

Lemma ??, the equality follows from the definition of o2, and the last inequality from #* = %. O



