
Lecture-08: Rademacher Complexity

1 Introduction

PAC learning guarantees were for finite hypothesis sets. However typical hypothesis sets in machine
learning problems are infinite, e.g. set of all hyperplanes in SVM. We will generalize existing results
and derive general learning guarantees for infinite hypothesis sets.

We will reduce the infinite hypothesis set to a finite set depending on the notion of complexity. First
notion is Rademacher complexity, which is difficult to compute empirically for many hypothesis sets.
We then study combinatorial notions of complexity, growth function and the VC-dimension. We relate
Rademacher complexity to growth function, and then bound the growth function by the VC-dimension,
which are easy to bound or compute in many cases.

2 Rademacher complexity

Consider a hypothesis set H ⊂ YX and loss function L : Y × Y → R. Let Z = X × Y, then for each
hypothesis h ∈ H, we can associate a function g : Z → R such that g(x,y) = L(h(x),y) which captures
the corresponding loss L. The family of loss function associated to hypothesis set H is defined as

G ≜
{

g ∈ RZ : g(x,y) = L(h(x),y) for all (x,y) ∈ X× Y, h ∈ H
}

.

The Rademacher complexity captures the richness of a family of functions by measuring the degree to
which a hypothesis set can fit random noise.

Definition 2.1 (Rademacher random variable). A uniform random variable X : Ω → {−1,1} is called
a Rademacher random variable.

For any g ∈ G and m-sized sample z ∈ Zm, we denote by gz ≜ (g(z1), . . . , g(zm)) ∈ Rm.

Definition 2.2 (Empirical Rademacher complexity). Let G ⊆ [a,b]Z be a family of functions and a fixed
labeled sample z = (z1, . . . ,zm) ∈ Zm of size m. Then, the empirical Rademacher complexity of G with
respect to the labeled sample z is defined as

R̂z(G)≜ E

[
sup
g∈G

1
m
⟨σ, gz⟩

]
,

where σ : Ω → {−1,1}m, is an m-length vector of independent Rademacher variables.

Remark 1. The inner product ⟨σ, gz⟩ measures the correlation of gz with random noise σ, and the supre-
mum over all g ∈ G measures how well the hypothesis class H correlates with σ over the labeled sample
z. This is a measure of richness/complexity of class G, since richer families can generate more gz and
better correlate with random noise on average.

Definition 2.3 (Rademacher complexity). Let D be the unknown fixed distribution according to which
labeled sample z ∈ Zm is drawn in an i.i.d. fashion. For any m ∈ N, the Rademacher complexity of a
family of loss functions G is mean of empirical Rademacher complexity for sample z, and denoted by

Rm(G)≜ ER̂z(G).

Lemma 2.4. Let G ⊆ [0,1]Z be a family of functions. Then, for any δ > 0, with probability at least 1 − δ
2

Rm(G)⩽ R̂z(G) +

√
ln 2

δ

2m
.
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Proof. We observe that ER̂z(G), and that R̂G satisfies the bounded difference property with bounding
vector 1

m 1. The result follows from the McDiarmid’s inequality.

Theorem 2.5. Let G ⊆ [0,1]Z be a family of functions. Then, for any δ > 0, with probability at least 1 − δ, both
the inequalities hold for all g ∈ G

Eg(z)⩽
1
m
⟨1, gz⟩+ 2Rm(G) +

√
ln 1

δ

2m
, Eg(z)⩽

1
m
⟨1, gz⟩+ 2R̂z(G) + 3

√
ln 2

δ

2m
.

Proof. For any labeled sample z ∈ Zm and loss function g ∈ G, we denote the empirical average of g over
labeled sample z as

Êz[g]≜
1
m
⟨1, gz⟩ .

We consider the following function Φ : Zm → R,

Φ(z)≜ sup
g∈G

(Eg − Êz[g]).

Consider two samples z,z′ differing at a single example zm in z and z′m in z′. Then, we can write

Φ(z′)− Φ(z)⩽ sup
g∈G

(Êz′ [g]− Êz[g]) = sup
g∈G

g(zm)− g(z′m)
m

⩽
1
m

.

Similarly, we can obtain Φ(z)− Φ(z′)⩽ 1
m . Hence, the function Φ has the bounded difference property

with bounding vector 1
m 1. By McDiarmid’s inequality, for any δ > 0, with probability at least 1 − δ

2 , we
have

Φ(z)⩽ EΦ(z) +

√
ln 2

δ

2m
.

We next bound the mean of the Φ(z) by the difference of empirical average for samples z,z′, sampled
i.i.d. from the fixed unknown distribution D, by applying the Jensen’s inequality to convex function
supremum. We get

EΦ(z) = E

[
sup
g∈G

(E[g]− Êz[g])

]
= E

[
sup
g∈G

E
[
Êz′ [g]− Êz[g]

]]
⩽ E

[
sup
g∈G

(Êz′ [g]− Êz[g])

]
.

Since z,z′ are i.i.d. , the inner product ⟨σ, gz′ − gz⟩ for i.i.d. Rademacher vector σ ∈ {−1,1}m has same
distribution as ⟨1, gz′ − gz⟩. Therefore, we have

EΦ(z)⩽ E

[
sup
g∈G

1
m
⟨σ, gz′ − gz⟩

]
⩽ E

[
sup
g∈G

1
m
⟨σ, gz′⟩

]
+ E

[
sup
g∈G

1
m
⟨−σ, gz⟩

]
= 2Rm(G).

Lemma 2.6. Let Y= {−1,1} and Z= X× Y, and the hypothesis set H ⊆ YX be a family of functions and let G
be the family of loss functions associated to the hypothesis set H for the zero-one loss, i.e.

G =
{
(x,y) 7→ 1{h(x) ̸=y} : h ∈ H

}
.

For any labeled sample z ∈ Zm, let x = zX denote its projection over X, i.e. x = (x1, . . . , xm) ∈ Xm. Then,

R̂z(G) =
1
2
R̂x(H).

Proof. For any sample z = ((xi,yi) ∈ X× Y : i ∈ [m]) where Y= {−1,1}, we have 1{h(xi) ̸=yi} =
1−yih(xi)

2 .
Therefore, we can write

R̂z(G) = E

[
sup
h∈H

1
m

m

∑
i=1

σi1{h(xi) ̸=yi}

]
= E

[
sup
h∈H

1
m

m

∑
i=1

σi

(1 − yih(xi)

2

)]
.
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Since ∑m
i=1 σi remains constant for all h ∈ H and its mean is zero, we can ignore this term. Further,

σ ◦ y = (σiyi ∈ Y : i ∈ [m]) has same distribution as σ = (σi ∈ Y : i ∈ [m]), and therefore

R̂z(G) =
1
2

E

[
sup
h∈H

1
m
⟨−σ,y ◦ h(x)⟩

]
=

1
2

E

[
sup
h∈H

1
m
⟨σ, h(x)⟩

]
=

1
2
R̂x(H).

Theorem 2.7 (Rademacher complexity bounds – binary classification). Let H ⊆ XY be a family of func-
tions for Y = {−1,+1} and let D be the fixed and unknown distribution over the input space X. Then, for any
δ > 0, with probability at least 1 − δ over a sample z ∈ Zm of size m drawn i.i.d. according to D, each of the
following holds for any hypothesis h ∈ H

R(h)⩽ R̂(h) +Rm(H) +

√
ln 1

δ

2m
, R(h)⩽ R̂(h) + R̂S(H) + 3

√
ln 2

δ

2m
.

Proof. The result follow from Theorem ?? and Lemma ??.

Remark 2. The second learning bound is data dependent, and very useful if we can efficiently compute
the empirical Rademacher complexity R̂S(H). Since σ and −σ have the same distribution, we get

R̂S(H) = E

[
sup
h∈H

1
m
⟨−σ, hS⟩

]
= −E

[
inf
h∈H

1
m
⟨σ, hS⟩

]
.

for a fixed value of σ, computing infh∈H
1
m ⟨σ, hS⟩ is equivalent to an empirical risk minimization problem,

which is known to be computationally hard for some hypothesis sets.

A McDiarmid’s inequality

Definition A.1 (Martingale difference). A sequence of random variables (Vn ∈ R : n ∈ N) is a mar-
tingale difference sequence with respect to a random sequence (Xn ∈ R : n ∈ N) if Vn is a function of
X1, . . . , Xn for all n ∈ N, and

E[Vn+1
∣∣ X1, . . . , Xn] = 0.

Lemma A.2. Let V and Z be random variables satisfying E[V
∣∣ Z] = 0 and f (Z) ⩽ V ⩽ f (Z) + c for some

function f and constant c ⩾ 0. Then, for all t > 0, we have

E[esV ∣∣ Z]⩽ et2c2/8.

Proof. The result follows from Hoeffding’s Lemma for conditional expectation given Z, where [a,b] =
[ f (Z), f (Z) + c].

Theorem A.3 (Azuma’s inequality). Let (Vn : n ∈ N) be a martingale difference sequence with respect to the
random variables (Xn : n ∈ N) and assume that for all n ∈ N there is a constant cn ⩾ 0 and random variable Zn,
which is a function of X1, . . . , Xi−1, that satisfy Zi ⩽ Vi ⩽ Zi + c. Defining σ2 ≜ ∑m

i=1 c2
i = ∥c∥2

2, we have for all
ϵ > 0 and m ∈ N,

P

{
m

∑
i=1

Vi ⩾ ϵ

}
⩽ e−2ϵ2/σ2

, P

{
m

∑
i=1

Vi ⩽−ϵ

}
⩽ e−2ϵ2/σ2

.

Proof. For any k ∈ N, we can define Sk ≜ ∑k
i=1 Vi, then by Chernoff bound, we have

P{Sm ⩾ ϵ}⩽ e−tϵE[etSm] = e−tϵE[etSm−1E[etVm |X1, . . . , Xm−1]]⩽ e−tϵE[etSm−1 ]et2c2
m/8 ⩽ exp

(
−tϵ +

t2σ2

8

)
.

The result for the first part follows by taking t∗ = 4ϵ
σ2 . The second part can be proved similarly.

Definition A.4 (Bounded difference property). A function f : Xm → R is said to have the bounded
difference property, if for all i ∈ [m] there exists a constant ci > 0 such that for any x,y ∈ Rm differing
only at the ith location, we have

| f (x)− f (y)|⩽ ci. (1)

The vector c ∈ Rm
+ is called the bounding vector.
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Theorem A.5 (McDiarmid’s inequality). Let f : Xm be a function with the bounded difference property with
bounding vector c ∈ Rm

+, and (Xi ∈ X : i ∈ [m]) be a set of m independent random variables. Denoting f (S) ≜
f (X1, . . . , Xm), for all ϵ > 0, we have

P{ f (S)− E f (S)⩾ ϵ}⩽ e−2ϵ2/∥c∥2
2 , P{ f (S)− E f (S)⩽−ϵ}⩽ e−2ϵ2/∥c∥2

2 .

Proof. It suffices to show that f (S)− E f (S) = ∑m
i=1 Vi for some martingale difference sequence (Vi : i ∈

[m]) with respect to the sequence (Xi : i ∈ [m]) and Zi ⩽ Vi ⩽ Zi + ci for some random variable Zi a
function of X1, . . . , Xi−1.

Let V = f (S)− E f (S), then we define such a sequence (V1, . . . ,Vm) as

Vk = E[V
∣∣ X1, . . . , Xk]− E[V

∣∣ X1, . . . , Xk−1], k ∈ [m],
m

∑
k=1

Vk = V.

We can verify that (Vi : i ∈ [m]) is martingale difference equation, since Vk is a function of X1, . . . , Xk and
E[Vk|X1, . . . , Xk−1] = 0 for each k ∈ [m]. Since E f (S) is not random, we can write

Vk = E[ f (S)
∣∣ X1, . . . , Xk]− E[ f (S)

∣∣ X1, . . . , Xk−1],

and define upper and lower bounds for Vk as

Wk ≜ sup
x

E[ f (S)
∣∣ X1, . . . , Xk−1, x]− E[ f (S)

∣∣ X1, . . . , Xk−1], Uk ≜ inf
x

E[ f (S)
∣∣ X1, . . . , Xk−1, x]− E[ f (S)

∣∣ X1, . . . , Xk−1].

Then the result follows from the hypothesis (??), which implies that

Wk − Uk = sup
x,y∈X

E[ f (S)
∣∣ X1, . . . , Xk−1, x]− E[ f (S)

∣∣ X1, . . . , Xk−1,y]⩽ ck.
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