
Lecture-09: Growth functions and VC-dimension

1 Growth function

Rademacher complexity can be bounded in terms of the growth function.

Definition 1.1 (Dichotomy). Given a hypothesis set H, a dichotomy of a sample x ∈ Xm is one of
the possible ways of labeling the points of sample x using a hypothesis h ∈ H, and denoted by hx ≜
(h(x1), . . . , h(xm)) ∈ Ym.

Definition 1.2 (Dichotomy set). For hypothesis set H, the set of dichotomies of sample x ∈ Xm, is the
set of m-length Y-valued sequences Hx ≜ {hx : h ∈ H} ⊆ Ym.

Definition 1.3 (Growth function). For a hypothesis set H, the growth function ΠH : N → N is defined
as

ΠH(m)≜ max
x∈Xm

|Hx| = max
x∈Xm

|{hx : h ∈ H}| .

Remark 1. Growth function is a purely combinatorial measure, and the following holds true for it.
(a) It is the maximum number of distinct ways in which m points can be classified using hypotheses in

H.
(b) It is the maximum number of dichotomies for m points using hypotheses in H.
(c) It is a measure of richness of the hypothesis set H.
(d) It doesn’t depend on the unknown distribution D, unlike Rademacher complexity.

Lemma 1.4 (Massart). Consider a finite set A ⊂ Rm with r ≜ maxx∈A ∥x∥2, and independent Rademacher

random vector σ : Ω → {−1,1}m. Then, we have E
[

1
m supx∈A ⟨σ, x⟩

]
⩽

r
√

2ln|A|
m .

Proof. For any t > 0, using Jensen’s inequality for the convex function f (x) = etx, rearranging terms,
and bounding the supremum of positive numbers by its sum, we obtain

exp

(
tE

[
sup
x∈A

⟨σ, x⟩
])

⩽ E

[
exp

(
tsup

x∈A
⟨σ, x⟩

)]
= E

[
sup
x∈A

et⟨σ,x⟩
]
⩽ E

[
∑

x∈A
et⟨σ,x⟩

]
.

From the independence of Rademacher random vector σ, the application of Hoeffding lemma to inde-
pendent random vector tσ ◦ x such that −t |xi|⩽ tσixi ⩽ t |xi|, and the definition of r, we get

∑
x∈A

E
[
et⟨σ,x⟩

]
⩽ ∑

x∈A

m

∏
i=1

E[etσixi ]⩽ ∑
x∈A

m

∏
i=1

e
4t2x2

i
8 ⩽ ∑

x∈A
e

t2
2 ∥x∥2

2 ⩽ |A| e
t2r2

2 .

Summarizing our results, taking the natural log of both sides and dividing by t, we get E
[

1
m supx∈A ⟨σ, x⟩

]
⩽

ln|A|
t + tr2

2 . The upper bound is minimized by taking t∗ =
√

2ln|A|
r . We get the result by dividing the both

sides of this minimized upper bound by m.

Corollary 1.5. Let G ⊂ {−1,1}X be a family of functions, then Rm(G)⩽
√

2lnΠG(m)
m .

Proof. For a fixed sample x = (x1, . . . , xm) ∈ Xm, we denote gx ≜ (g(x1), . . . , g(xm))) ∈ Ym for any g ∈ G.
Therefore, we can write the restriction of G to sample x, as Gx ≜ {gx : g ∈ G} . Since g ∈ G takes values
in {−1,1}, the norm of these vectors is

√
m. Applying Massart’s lemma to the restricted set Gx, we get

Rm(G) = ExR̂x(G) = ExEσ

[
sup
g∈G

1
m
⟨σ, gx⟩

]
= Eσ,x

[
sup
u∈Gx

1
m
⟨σ,u⟩

]
⩽ E

[√
2ln |Gx|

m

]
.

By definition, we have |Gx|⩽ ΠG(m), and hence the result follows.
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Corollary 1.6 (Growth function generalization bound). Let H ⊂ YX be a family of functions where Y =
{−1,1}. Then, for any δ > 0, with probability at least 1 − δ, for any hypothesis h ∈ H

R(h)⩽ R̂(h) +

√
2lnΠH(m)

m
+

√
ln 1

δ

2m
.

Remark 2. Growth function bounds can be also derived directly without using Rademacher complexity

bounds. The resulting bound is P
{∣∣R(h)− R̂(h)

∣∣ > ϵ
}
⩽ 4ΠH(2m)e−

mϵ2
8 . The generalization bound

obtained from this bound differs from Corollary ?? only in constants.

Remark 3. The computation of the growth function may not be always convenient since, by definition,
it requires computing ΠH(m) for all m ∈ N.

2 Vapnik-Chervonenkis (VC) dimension

The VC-dimension is also a purely combinatorial notion but it is often easier to compute than the growth
function or the Rademacher Complexity. We will consider the target space Y= {−1,1} in the following.

Definition 2.1 (Shattering). A sample x ∈ Xm is said to be shattered by a hypothesis set H when H
realizes all possible dichotomies of x, that is when ΠH(m) = 2m.

Definition 2.2 (VC-dimension). The VC-dimension of a hypothesis set H is the size of the largest set
that can be fully shattered by H. That is,

VC-dim(H)≜ max{m ∈ N : ΠH(m) = 2m} .

Remark 4. By definition, if VC-dim(H) = d, there exists a set of size d that can be fully shattered. This
does not imply that all sets of size d or less are fully shattered, in fact, this is typically not the case.

Remark 5. To compute the VC- dimension we will typically show a lower bound for its value and then
a matching upper bound. To give a lower bound d for VC-dim(H), it suffices to show that a sample
x ∈ Xd can be shattered by H. To give an upper bound, we need to prove that no sample x ∈ Xd+1 can
be shattered by H. This step is typically more difficult.

Example 2.3 (Intervals on the real line). Consider a hypothesis set H of separating intervals on
real line

H ≜
{

h ∈ {−1,1}R : h = 1[a,b] − 1[a,b]c , a,b ∈ R
}

.

Then d ⩾ 2, since (1,1), (−1,−1), (1,−1), (−1,1) can all be realized by x ∈ R2. Further, there is no
sample x ∈ R3 such that x1 < x2 < x3 and hS = (1,−1,1). That is, no set of three points can be
shattered, and hence VC-dim(H) = 2.

Remark 6. The VC-dimension of any vector space of dimension r < ∞ can be shown to be at most r.

Theorem 2.4 (Sauer). Let H ⊆ {−1,1}X have VC-dim(H) = d. Then, we have ΠH(d) ⩽ ∑d
i=0 (

m
i ), for all

m ∈ N.

Proof. The proof is by induction on the pair (m,d). If d = 0, then ΠH(1) < 2 for all points x ∈ X, which
implies H consists of single function, and therefore the upper bound of unity holds. If d = 1, then
ΠH(2)< 4,ΠH(1) = 2, and the upper bound of 1+ m = 2 holds. Therefore, the statement holds true for
the pairs (m,d) = (1,1) and (m,d − 1) = (1,0).

We assume that the inductive hypothesis is true for (m − 1,d − 1) and (m − 1,d). Let x ∈ Xm be
the sample with ΠH(m) dichotomies. That is, |Hx| = |{hx : h ∈ H}| = ΠH(m). We can partition the
hypothesis set H by the vectors hx ∈ Hx, by defining equivalence classes H(hx) ≜ {g ∈ H : gx = hx}.
Consider the subsample x′ = (x1, . . . , xm−1), and the corresponding set of dichotomies Hx′ . For each
hx ∈ Hx, there is a projection

and denote projection operator π : RS → RS′
. We consider the two family of functions

G1 = H|S′ = {π ◦ g : g ∈ G} , G2 =
{

g′ ∈ G1 :
∣∣∣π−1 ◦ g′

∣∣∣ = 2
}

.
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It follows that there exists functions g1, g2 ∈ G such that g1|S′ = g2|S′ . In particular, g1(xm) ̸= g2(xm) but
they agree on all other points S′ ⊂ S. It follows that |G| = |G1|+ |G2|.

Since G1 ⊂ G, it follows that VC-dim(G1)⩽ VC-dim(G)⩽ d, then by the definition of growth func-
tion and induction hypothesis,

|G1|⩽ ΠG1(m − 1)⩽
d

∑
i=0

(
m − 1

i

)
.

Further, by definition of G2, if a set Z ⊆ S′ is shattered by G2, then the set Z ∪ {xm} is shattered by G.
Therefore,

VC-dim(G2)⩽ VC-dim(G)− 1 = d − 1.

From the definition of growth function and induction hypothesis,

|G2|⩽ ΠG2(m − 1)⩽
d−1

∑
i=0

(
m − 1

i

)
.

Since |G| = |G1|+ |G2|, we have

|G|⩽
d

∑
i=0

(
m − 1

i

)
+

d−1

∑
i=0

(
m − 1

i

)
=

d

∑
i=0

((
m − 1

i

)
+

(
m − 1
i − 1

))
=

d

∑
i=0

(
m
i

)
.

Hence, the result holds for (m,d).

Corollary 2.5. Let H be a hypothesis set with VC-dim(H) = d, then

ΠH(m)⩽
( em

d

)d
= O(md), for all m ⩾ d.

Proof. For m ⩾ d and 0 ⩽ i ⩽ d, we have (m
d )

d−i ⩾ 1. Therefore,

ΠH(m)⩽
d

∑
i=0

(
m
i

)
⩽

d

∑
i=0

(
m
i

)(m
d

)d−i
=
(m

d

)d d

∑
i=0

(
m
i

)(
d
m

)i
.

Since the summation of positive terms over i ∈ {0, . . . ,d} can be upper bounded by summation over

i ∈ {0, . . . ,m}, we get
(m

d
)d

∑d
i=0 (

m
i )
(

d
m

)i
⩽
(m

d
)d

∑m
i=0 (

m
i )
(

d
m

)i
. From the Binomial theorem, we get

∑m
i=0 (

m
i )
(

d
m

)i
=
(

1 + d
m

)m
. Since 1 + x ⩽ ex for all x ∈ R, we get

(
1 + d

m

)m
⩽ ed, and hence the result

follows.

Remark 7. The growth function only exhibits two types of behavior,

(i) either VC-dim(H) = d < ∞, in which case ΠH(m) = O(md),

(ii) or VC-dim(H) = ∞, in which case ΠH(m) = 2m for all m ∈ N.

Corollary 2.6 (VC-dimension generalization bounds). Let H ⊂ {−1,1}X be a family of functions with
VC-dimension d. Then, for any δ > 0, with probability at least 1 − δ

R(h)⩽ R̂(h) +

√
2d ln em

d
m

+

√
ln 1

δ

2m
, for all h ∈ H.

Remark 8. (i) Generalization risk is of the form R(h)⩽ R̂(h) + O
(√

ln(m/d)
m/d

)
, which implies that the

ratio m
d is important.

(ii) Without the intermediate step of Rademacher complexity, a direct bound on generalization risk
can be obtained as

R̂(h) +

√
8d ln 2em

d + 8ln 4
δ

m
.
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