Lecture-10: Margin Theory

1 Margin theory

We present generalization bounds for SVM algorithms based on the notion of margin.

Definition 1.1 (Margin). The geometric margin p(x,y) of a point x with label y with respect to a linear
classifier i : x — (w, x) + b is its distance to the hyperplane (w,x) + b = 0. That is,

The margin of a linear classifier /i for a sample x € X" is the minimum margin over the points in the
sample, i.e.

p 2 min { () = MU}

Corollary 1.2. Forany § > 0, with probability at least 1 — 6, foranyh € H={x — (w,x) + b:w € R",b € R},
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Proof. Recall that the VC-dimension of the family of hyperplanes or linear hypotheses in R" is 1 + 1.
Application of corollary to Sauner’s lemma to generalization bound for this hypothesis set, gives us the
result. O

Remark 1. When the dimension of the feature space # is large compared to the sample size m, this bound
is uninformative.

Theorem 1.3. Let x € X™ be a sample such that sup;c,, lx;|| < r. Then, the VC-dimension d of the set of
canonical hyperplanes

H= {x — sign((w,x)) : m[in]|(w,xi>| =1, |lw|| < A}
e\m

is upper bounded as VC-dim(H) = d < r*A>.

Proof. Let x € X¥ be a sample set that can be fully shattered. Then, for all y € {—1,1}d, there exists
w such that y;((w,x;)) > 1 for all i € [d]. Summing up these inequalities, from the linearity of inner
product and ||w|| < A, we get
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Since this inequality holds forally € {—1,1 }d, it also holds on expectation over y € {—1, 1}d drawn i.i.d.
according to a uniform distribution. From the independence assumption, we have Ely;y;] = E[y;]E[y/]
for i # j. Thus, since the distribution is uniform, lE[yl-y]-] =1 {i=j}- Taking expectation and applying

Jensen’s inequality to convex square function, we get
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Remark 2. When the training data is linearly separable, the maximum-margin canonical hyperplane
with ||w|| = 1/p can be plugged into above theorem. In this case, A =1/p, and the upper bound can be
rewritten as 2 /2. Note that the choice of A must be made before receiving the sample x € X.

Theorem 1.4. Let x € X" be a sample such that sup;c,, ||xi[| < rand H = {x — (w,x) : |w|| < A}. Then,
the empirical Rademacher complexity of H can be bounded as

R r2A2
:RH(TTZ) = o

Proof. From the definition of Rademacher complexity, the linearity of inner products, the application of
Cauchy-Schwarz inequality to inner products, the application of Jensen’s inequality to convex square

function, and i.i.d. uniform nature of Rademacher vector o we get
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To present the main margin-based generalization bounds for non-separable training data, we intro-
duce a margin loss function, for the target margin p > 0.

1
Rp(m) = - < i Xi iXi

Definition 1.5 (Margin loss function). For any p > 0, the p-margin loss is the function L, : R x R — R
defined for all y,y’ € Rby Ly(y,y’) = ®,(yy’) with,

0, P<X,
Dp(x)=¢1-x/p, 0<x<p,
1, x <0.

Definition 1.6 (Empirical margin loss). Given a sample x € X" and a hypothesis & : X — {—1,1}, the
empirical margin loss is defined by

Ro(1) = . 3w (x9)

Remark 3. (i) For any i € [m], we can upper bound the margin loss function @ (yih(x;)) < Ly n(x;)<p}-
Thus, the empirical margin loss can be upper-bounded as
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(ii) The upper bound on the empirical margin loss is the fraction of the points in the training sample
S that have been misclassified or classified with confidence less than p.

(iii) When £ is a linear function defined by a weight vector w with ||w|| =1, y;(x;) is the margin of
point x;. Thus, the upper bound is then the fraction of the points in the training data with margin
less than p.

(iv) The slope of the function @, defining the margin loss is at most 1/p, thus ®,, is 1/ p-Lipschitz.

Lemma 1.7 (Talagrand). Let ® : R — R be an ¢-Lipschitz function. Then, for any hypothesis set H of real-
valued functions, we have
Rz (PoH) < IR, (H).

Proof. For a sample S = (x1,...,x;), by the definition of empirical Rademacher complexity, we have
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where u,, _1(h) = Z?:ll 0;(® o h)(x;). By the definition of supremum, for any € > 0, there exist h1,hy € H
such that

Up—1(h1) + (@ ohy)(xm) = (1—€) Zug [Um—1(h) + (Do h)(xm)],

1 (12) = (9 ©12) (o) > (1 €)sup [ 1) — (@ 1) (xn) .

Thus for any € > 0, by the definition of [E,,,, we have
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Let s = sign(hy(x,) — ha(xm)). Then, from the (-Lipschitz property of ®, we get
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Since the inequality holds for all € > 0, we have
Eo,, [supttm—1(h) + om (P o h)(xm)] < K, [sup ity —1(h) + omlh(xm)].
Proceeding in the same way for all other 0;,i € [m — 1] proves the lemma. O

Theorem 1.8 (Margin bound for binary classification). Let H be a set of real-valued functions. Fix p > 0,
then, for any & > 0, with probability at least 1 — 5, each of the following holds for allh € H
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Proof. Let H={z+ yh(x) :h € H} for z € X x Y, and the family of loss functions { = {®, 0 f : f € H}.
From the generalization bound on binary classification using Rademacher complexity, we get that with
probability at least 1 — &, for all g € H

Eo(z) < - (1 2R, (FC In;
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From the definition of ¢ and J(, we get

R ~ Inl

E®, (yh(x)) < Ro(h) +2Rm(®p 0 H) + 1/ &

Since L1,y < Pp(u) forallu € R, we have R(h) = El;(x)<0) < E®p(yh(x)). Further, Ry, is invariant
to a constant shift. Therefore,

R(h) < Ro(h) + 2Ry ((Pp — 1) 0 H) + |/ 5=2.

From the previous Lemma, ®, is 1/p-Lipschitz, and hence so is (&, — 1), further (&, — 1)(0) = 0. This
implies that R, (®, o H) < %Rm(H), and

R (H) = g sup i oih(x;)

heH =1

= R (H).
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Remark 4. Target margin p is the trade-off parameter in the generalization bound above. Empirical
margin loss R, increases as a function of target margin p, and the complexity term decreases with the p.



Theorem 1.9. Let H be a set of real-valued functions. Then, for any 6 > 0, with probability at least 1 — J, each
of the following holds for all hypothesis h € H and target margin p € (0,1)
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Proof. Consider sequences p = (px >0:k € IN) and € = (¢ € (0,1) : k € IN). By the previous theorem,
we have

P {R(h) Ry (k) > pzkazm(H) + ek} < exp(—2med).

Choosing € = € + % for each k € IN, and using the union bound, we get
. 2 2
P (ukeN {R(h) — Ry (h) > me( + ek}> Y exp(—2m(e + VInk/m)?) < —mz% < 27 2me?,
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We can choose p; = 27 for all k € N. Then, for any p € (0,1), there exists k € IN such that p € (o, ox_1]
with pg = 1. For that k, we have p < px_1 =20, and thus 1/p, <2/p and

Ink = \/lnlogz(l/pk) < \/lnlogZ(Z/p).

N

Furthermore, for any & € H, we have Ry, (h) < R, (h) from the monotonicity of empirical marginal loss
in the target margin p. Thus,

p (UkeN {R(h) - Rp(h) > 4R, (H) + % +€}> < 2exp(—2me?).

Corollary 1.10. Let H = {x — (w,x) : |[w|| < A} and assume that X C x : ||x|| <r. Fix the target margin
p > 0, then, for any 6 > 0, with probability at least 1 — 5, for any h € H,
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Remark 5. This bound can be generalized to hold uniformly for all p > 0 at the cost of an additional

R(h) < Ry(h) +2
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Remark 6. This generalization bound for linear hypotheses does not depend directly on the dimension
of the feature space, but only on the margin. It suggests that a small generalization error can be achieved
when p/7 is large (small second term) while the empirical margin loss is relatively small (first term).
The latter occurs when few points are either classified incorrectly, or correctly with margin less than p.

Remark 7. Lack of dependence of the guarantee on the dimension of the feature space appears to contra-
dict the VC-dimension lower bounds, which show that for any learning algorithm A there exists a bad
distribution for which the error of the hypothesis returned by the algorithm is Q)(d/m) with a non-zero
probability. However, the bound of the corollary does not rule out such bad cases, since for such bad
distributions, the empirical margin loss would be large even for a relatively small margin p, and thus
the bound of the corollary would be loose in that case.

Remark 8. Thus, in some sense, the learning guarantee of the corollary hinges upon the hope of a good
margin value p. If there exists a relatively large margin value p > 0 for which the empirical margin loss
is small, then a small generalization error is guaranteed by the corollary. This favorable margin situation
depends on the distribution. While the learning bound is distribution-independent, the existence of a
good margin is in fact distribution-dependent. A favorable margin seems to appear relatively often in
applications.

Remark 9. The bound of the corollary gives a strong justification for margin-maximization algorithms
such as SVMs. For p = 1, the margin loss can be upper bounded by the hinge loss. For all x € R, we



have ®;(x) < max{1 — x,0}. Using this fact, the bound of the corollary implies that with probability at
least1— 6, forallh € H= {x+— (w,x) : |w|| < A}, we have
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where ¢; = max {1 — y; (w,x;),0}. The objective function minimized by the SVM algorithm has precisely
the form of this upper bound: the first term corresponds to the slack penalty over the training set and
the second to the minimization of the ||w|| which is equivalent to that of ||w||*>. Note that an alternative
objective function would be based on the empirical margin loss instead of the hinge loss. However, the
advantage of the hinge loss is that it is convex, while the margin loss is not.

Remark 10. These generalization bounds do not directly depend on the dimension of the feature space
and guarantee good generalization with a favorable margin. Thus, we can seek large-margin separating
hyperplanes in a very high-dimensional space. However, finding solution to SVM in higher dimensions
require computing many inner products in that space, which could be very costly. However, if the inner
products are represented by PDS Kernels, SVMs in higher dimensions work well.

2 Learning Guarantees: Kernel Methods

Consider a hypothesis set of the form H = {h € H : |||y < A}, for some A > 0, where H is the RKHS
associated to a kernel K. By the reproducing property, any & € H is of the form x?? — (h,K(x,-)) =
(h,®(x)) with ||h||y < A, where @ is a feature mapping associated to K, that is of the form x — (w, ®(x))
with ||w||gy < A.

Theorem 2.1 (Rademcaher complexity of kernel-based hypotheses). Let K: X x X — R be a PDS kernel
and let @ : X — H be a feature mapping associated to K. Let S C {x : K(x,x) < 1} be a sample of size m, and
let H= {x+— (w,®(x)) : ||w|lgy < A} for some A > 0. Then 22?2

R AL/tr[K 2A2
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Proof. The proof steps are identical to the Theorem ?2, where x; is replaced by ®(x;) and hence ||x;]|* =
K(x;,x;). It follows that } " ; K(x;,x;) = tr[K].

Remark 11. Trace of the kernel matrix is an important quantity for controlling the complexity of hypoth-
esis sets based on kernels.

Corollary 2.2 (Margin bounds for kernel-based hypotheses). Let K: X x X — R be a PDS kernel withr =
sup,.c K(x,x). Let ®: X — H be a feature mapping associated to K, and let H = {x — (w0, ®(x)) : |w|yg < A}
for some A > 0. Fix p > 0, then for any § > 0, the following hold with probability at least 1 — J for any hypothesis
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